

Chapter 7, Hash tables:

- ▶ General introduction; separate chaining (week-before Wednesday)
- ▶ Open addressing (week-before Friday)
- ▶ Hash functions (last week Monday)
- ▶ Perfect hashing (Monday)
- ▶ Hash table performance (**Today**)
- ▶ (Start Ch 8, Strings, Thursday (in lab) and Friday)

Today:

- ▶ Finishing perfect hashing
- ▶ Elements of hashtable performance
- ▶ Separate chaining performance
- ▶ Open addressing performance

End-of-semester important dates

- ▶ Tues, Dec 2: Test 4 practice problems made available.
- ▶ Thurs, Dec 4: Last “normal” lab
- ▶ Mon, Dec 8: Last project assigned
- ▶ Tues, Dec 9: Last “normal” running of project grading script
- ▶ Wed, Dec 10: Test 3 & 4 Review sheet distributed.
- ▶ Thurs, Dec 11: Review lab (pick practice problems for Test 4)
- ▶ Fri, Dec 12, AM: “Two-minute warning” running of project grading script (Canvas gradebook will not be updated—see project report in your turn-in file)
*Note that Fri, Dec 12 is the *Last Day of Classes*.*
- ▶ Fri, Dec 12, 11:59 PM: Official project deadline
- ▶ Sat, Dec 13, when I wake up: Permissions to turn-in folders turned off
- ▶ Mon, Dec 15: Project grading script run for final/semester grades
- ▶ Thurs, Dec 18, 10:30am-12:30pm: Tests 3 and 4 (in lab)

	Find	Insert	Delete
Unsorted array	$\Theta(n)$	$\Theta(1)$ [$\Theta(n)$]	$\Theta(n)$
Sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$
Linked list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
Balanced BST	$\Theta(\lg n)$	$\Theta(1)$ [$\Theta(\lg n)$]	$\Theta(1)$ [$\Theta(\lg n)$]
What we want	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

$$\frac{(n+1) + n + (n-1) + \cdots + 3 + 2 + \overbrace{1 + \cdots + 1}^{m-n}}{m}$$

$$= \frac{m + n + (n-1) + \cdots + 2 + 1}{m} \quad \text{the initial } m \text{ accounting for the last probe in each case}$$

$$= \frac{m}{m} + \frac{(n+1) \cdot \frac{n}{2}}{m} \quad \text{as an arithmetic series}$$

$$\approx 1 + \frac{(n+1) \cdot \frac{n}{2}}{2 \cdot n} \quad \text{since } m \text{ is about } 2 \cdot n$$

$$= 1 + \frac{n+1}{4} \quad \text{by cancellation}$$

$$\frac{[(s_0 + 1) + s_0 + (s_0 - 1) + \cdots + 2] + \cdots + 1 + \cdots 1}{m} = 1 + \frac{\sum_{i=0}^{\gamma-1} \sum_{j=1}^{s_i} j}{m}$$

What is the probability that a miss k requires at least i probes?

Conditional probability

$P(X \mid Y)$: What is the probability of event X in light of event Y ?

$$P(X \wedge Y) = P(X) \cdot P(X \mid Y)$$

$$P(X_0 \wedge X_1 \wedge \cdots \wedge X_{N-1}) = P(X_0) \cdot P(X_1 \mid X_0) \cdot P(X_1 \mid X_0 \wedge X_1) \cdots P(X_{N-1} \mid X_0 \wedge \cdots \wedge X_{N-2})$$

$$P(T[h(k) + 1] \neq \text{null} \mid T[h(k)] \neq \text{null}) = \frac{n-1}{m-1}$$

The probability that a miss requires at least i probes:

$$\begin{aligned}
 & \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \\
 & \leq \left(\frac{n}{m}\right)^{i-1} \quad \text{since } n < m \\
 & \leq \alpha^{i-1} \quad \text{by substitution}
 \end{aligned}$$

$$\begin{aligned}
\sum_{i=1}^m i \cdot P\left(\begin{array}{l} \text{it takes} \\ i \text{ probes} \end{array}\right) &= \sum_{i=1}^m i \cdot \left(P\left(\begin{array}{l} \text{it takes} \\ \text{at least } i \\ \text{probes} \end{array}\right) - P\left(\begin{array}{l} \text{it takes at} \\ \text{least } i+1 \\ \text{probes} \end{array}\right) \right) \\
&= \sum_{i=1}^m P\left(\begin{array}{l} \text{it takes} \\ \text{at least } i \\ \text{probes} \end{array}\right) && \text{by telescoping} \\
&\leq \sum_{i=1}^m \alpha^{i-1} && \text{by the previous result} \\
&\leq \sum_{i=1}^{\infty} \alpha^{i-1} && \text{since } m < \infty \\
&= \sum_{i=0}^{\infty} \alpha^i && \text{by a change of variable} \\
&= \frac{1}{1-\alpha} && \text{by geometric series}
\end{aligned}$$

Is the following assumption true for linear probing?

$$P(T[h(k) + 1] \neq \text{null} \mid T[h(k)] \neq \text{null}) = \frac{n - 1}{m - 1}$$

In general, is the following assumption true for a probing strategy?

$$P(T[\sigma(k, 1)] \neq \text{null} \mid T[\sigma(k, 0)] \neq \text{null}) = \frac{n - 1}{m - 1}$$

What is the difference between

Each array index is
equally likely to be
the hash of a given key.

vs

Each array position is
equally likely to be
occupied.

Linear probing is biased towards clustering:

x	Number of buckets with exactly x previous buckets filled	Number of filled buckets with exactly x previous buckets filled	Probability that a bucket is filled if exactly x previous buckets are filled.
0	97	48	.495
1	48	22	.458
2	22	12	.545
3	12	7	.583
4	7	4	.571
5	4	3	.75
6	3	2	.667
7	2	2	1
8	2	0	0

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

$$\frac{1}{2} \cdot \left(1 + \frac{1}{(1-\alpha)^2} \right)$$

After n calls to `put()` with unique keys, no removals, consider **average chain length** over all keys (low is good), **percent of keys that are in their ideal location** (high is good), and **length of the longest chain** (low is good)

	n	Linear probing			Quadratic probing			Double hashing		
Surnames	1000	2.092	64.7%	31	1.421	75.8%	9	2.327	65.2%	31
Mountains	1360	1.568	73.8%	17	1.729	65.8%	11	1.770	73.4%	16
Mountains (height)	1360	1.932	75.1%	99	1.882	68.9%	18	1.830	72.4%	13
Chemicals	663	1.517	75.0%	16	1.729	65.5%	10	1.701	75.5%	9
Chemicals (symbol)	663	1.885	71.0%	20	1.837	66.4%	13	1.798	72.7%	12
Books	718	1.419	76.7%	8	1.659	70.0%	11	1.656	75.8%	8
Books (ISBN)	718	1.542	74.4%	21	1.670	67.8%	15	1.724	74.5%	10
Random strings	5000	1.544	77.6%	49	1.735	69.9%	37	1.598	78.1%	13
Random strings	5000	1.531	77.1%	35	1.729	69.8%	28	1.593	77.9%	12
Random strings	5000	1.643	77.5%	76	1.754	68.6%	29	1.590	78.1%	13

Coming up:

*Do **Open addressing hashtable** project (due this past Mon, Dec 1)*

*Do **Perfect hashing** project (due mon, Dec 8)*

*Due **Wed, Dec 3** (end of day)*

Re-read the last part of Section 7.3

Take quiz

*Due **Fri, Dec 5** (end of day)*

Read Section 8.1

Do Exercises 8.(4 & 5)

Take quiz

*Due **Mon, Dec 8** (end of day)*

Read Section 8.2

(No quiz or practice problems)