Chapter 5, Binary search trees:

» Binary search trees; the balanced BST problem (fall-break eve; finished
week-before Friday)

AVL trees (week-before Friday and last week Monday)
Traditional red-black trees (last week Wednesday)
Left-leaning red-black trees (last week Friday)
“Wrap-up” BSTs (Today)

Begin dynamic programming (Wednesday)

Test 2 Thursday, Nov 13

vVvyYvyVvVvyVvyy

Today:
» Balanced tree comparisons
» Survey of B-trees

Blackheight 1 2 3 4
Height 2 4 6 8
Nodes 2 6 14 30

AVL trees
h<144lgn

The difference between the longest
routes to leaves in the two subtrees is
no greater than 1.

Stronger constraint, more aggressive re-
balancing, more balanced tree, more
work spent rebalancing.

(Traditional) red-black trees
h<2lg(n+2)—2

The longest route to any leaf is no
greater than twice the shortest route to
any leaf.

Looser constraint, less aggressive rebal-
ancing, less balanced tree, less work
spent rebalancing.

Height: 4 Height: 15

Leaves: 8 Leaves: 1

Total depth: 34 0/ Total depth: 105
Height: 5

Leaves: 7

Total depth: 36

Height: 5 Height: 6
Leaves: 7 Leaves: 7
Total depth: 37 0/ Total depth: 38

Unbalanced

AVL

Traditional RB

Left-leaning RB

Height
32
31
30
28
32

16
15
15
15
15

16
16
16
16
16

18
19
18
18
19

After puts
Leaf % Total depth
33.3% 134507
33.2% 127865
33.1% 129037
33.5% 124463
33.4% 136730
43.2% 100327
42.9% 100395
42.8% 100341
42.8% 100282
43.0% 100582
42.8% 101948
42.9% 101226
43.1% 101525
42.7% 101680
42.9% 101292
42.8% 102288
42.9% 102860
43.1% 101949
42.7% 102011

42.9%

102552

Height
28
26
26
26
28

14
14
14
14
14

16
15
15
16
15

18
16
17
17
16

After removals

Leaf %
16.8%
17.0%
16.9%
17.3%
16.9%

21.5%
21.1%
21.1%
21.3%
21.2%

21.5%
21.4%
21.5%
21.5%
21.4%

21.6%
21.3%
21.5%
21.6%
21.4%

Total depth
61207
58171
58610
56086
62092

46088
46028
46028
45973
46097

46729
46344
46462
46572
46338

46950
46774
46691
46938
46764

5] 8‘12‘15‘23‘25‘29""‘5;":}32‘38‘43‘49‘56‘58‘63‘

/\ /\
/\/\ /\ /\\

ol
o 8
O

o

g

‘31 ‘60 ‘88 ‘113‘141 ‘170‘195 ‘259‘228‘281 ‘313‘347‘372‘400‘436‘

‘2 ‘5 ‘7 ‘ 8‘11‘13‘14‘17‘20‘21‘23‘26‘27‘29‘30‘ ‘33‘35‘37‘38‘41‘42‘44‘47‘50‘51‘53 ‘54‘57‘58‘59‘

ANT | BEE | BUG

FLEA

FLY

GNAT

GRUB

MITE

MOTH

NIT

Subtree with keys
less than ANT between ANT

and BEE

Subtree with keys

Subtree with keys
greater than WASF

Formally, a B-tree with maximum degree M over some ordered key type is either
> empty, or

P a node with with d — 1 keys and d children, designated as lists keys and
children such that

> [M/2]<d <M,

» children[0] is a B-tree such that all of the keys in that tree are less than keys|[0],

> forall i € [1,d — 1), children][i] is a B-tree such that all of the keys in that tree are
greater than keys[i — 1] and less than keys]/],

» and children[d — 1] is a B-tree such that all of the keys in that tree are greater
than keys[d — 2].

keys values children deg

eight bytes each position four bytes each position eight bytes each position
offset
instrucet O 8 88 96 100 140 144 152 240 248 252
Ly [y oo Ty Toee] eee o]] I E

| ‘ e
node for keys
greater than
WASP
node for keys

between ANT
and BEE
node for keys
less than
ANT

7341

5994 | 6435 | 6888

4587 | 5063 | 5571

3190 | 3622 | 4149

1381 | 1859 | 2276

‘ 470 ‘ 977

‘31 ‘60 ‘86 ‘113‘141 ‘170‘195 ‘259‘228‘261 ‘313‘347‘372‘400‘436‘

‘2 ‘5 ‘7 ‘ 8‘11‘13‘14‘17‘20‘21‘23‘26‘27‘29‘30‘ ‘33‘35‘37‘38‘41‘42‘44‘47‘50‘51‘53 ‘54‘57‘58‘59‘

(sl a]]

[2]5[s f2ia] [20]22]2s] [| [29]at]3a]s6] | [se[40[4s]a7] | [s1]s2]s7[[|

(sl a]]

[2]5[sf2ia] [20]22]2s] [| [29]at]3a][s6] | [se[40[a1]as]47] [s1]s2]s7[[|

NEECE

[20[22[25] | | [2o]s1]as]ae] | [a9]40]41]4s[47] [s1]s2[s7] | |

[2[s] [1]

9

10 (12 113

BEEED

l2]s[[1] fohehs] [| [20]22]2s] [| [20]31]ss[36] | [se[40]a1]as[47] [s1]s2][s7] | |

o[[e[s]

41
lels [[1] hohefis [] [eof2ofes] [] [eo]sr[sefse]] [aelas[ar] [| [s]sels7] | |

[soao] [[]

26

[efs [[[] foheha] [] [eof2efas] [| [esst[ssfse] | [aofao] | [| [a2fasar] [| [si]se[s7] []

hofiz fia | |

[20]22[25] | | [20[st]ss]as] | [sefao] | [| [a2]as[4r] | | [s1]52]57]

Mh —1

= M —1
M-1 M =(M-1 =
M-1) > M = (M=)
keys peri,_/

node sum of
nodes
at each
level
n = Mh—1
Mh = n41

h = logy(n+1)

n = Mh—1
Mh = n41

h = logy(n+1)

logp(n+ 1)

h= Iog%(n—l—l) T 1- logy 2

Cost of a search:

lgM-h = IgM- '3%_%;;;)
lg(n+1)
= |g M lg {\gz

“lgM

_ lg(n+1)
1

lfIg—M

lg M
= |g%/17—1 lg(n+1)
Compare: 1.441g n for AVL trees, 21g n for RB trees.

Let o be the cost of searching at a node (proportional to Ig M) and ¢; be the cost of
reading a node from memory. The the cost of an entire search is

logp(n+ 1)
c+c)———~
(0 +c1) 1—logy 2
Now, consolidate the constants by letting d = 1f(|)o+gc,;2' and we have

dlogp(n+1)

Coming up:

Do Traditional RB project (due Wed, Nov 5)
(Recommended: Do Left-leaning RB project for your own practice)

Due Mon, Nov 3 (end of day)—but hopefully you have spread it out
Read Sections 5.(4-6)

Do Exercise 5.13

Take quiz (red-black trees)

Due Thurs, Nov 6 (end of day)
Read Section 6.(1&2)

Do Exercises 6.(5-7)

Take quiz

Due Mon, Nov 10 (end of day)
Read Section 6.3

Do Exercises 6.(16, 19, 23, 33)
Take quiz

