
Chapter 5, Binary search trees:

▶ Binary search trees; the balanced BST problem (fall-break eve; finished
week-before Friday)

▶ AVL trees (week-before Friday and last week Monday)

▶ Traditional red-black trees (last week Wednesday)

▶ Left-leaning red-black trees (last week Friday)

▶ “Wrap-up” BSTs (Today)

▶ Begin dynamic programming (Wednesday)

▶ Test 2 Thursday, Nov 13

Today:

▶ Balanced tree comparisons

▶ Survey of B-trees



Blackheight 1 2 3 4

Height 2 4 6 8
Nodes 2 6 14 30



AVL trees (Traditional) red-black trees

h ≤ 1.44 lg n h ≤ 2 lg(n + 2)− 2

The difference between the longest
routes to leaves in the two subtrees is
no greater than 1.

The longest route to any leaf is no
greater than twice the shortest route to
any leaf.

Stronger constraint, more aggressive re-
balancing, more balanced tree, more
work spent rebalancing.

Looser constraint, less aggressive rebal-
ancing, less balanced tree, less work
spent rebalancing.



Height: 4
Leaves: 8
Total depth: 34

Height: 15
Leaves: 1
Total depth: 105

Height: 5
Leaves: 7
Total depth: 36

Height: 5
Leaves: 7
Total depth: 37

Height: 6
Leaves: 7
Total depth: 38



After puts After removals
Height Leaf % Total depth Height Leaf % Total depth

Unbalanced 32 33.3% 134507 28 16.8% 61207
31 33.2% 127865 26 17.0% 58171
30 33.1% 129037 26 16.9% 58610
28 33.5% 124463 26 17.3% 56086
32 33.4% 136730 28 16.9% 62092

AVL 16 43.2% 100327 14 21.5% 46088
15 42.9% 100395 14 21.1% 46028
15 42.8% 100341 14 21.1% 46028
15 42.8% 100282 14 21.3% 45973
15 43.0% 100582 14 21.2% 46097

Traditional RB 16 42.8% 101948 16 21.5% 46729
16 42.9% 101226 15 21.4% 46344
16 43.1% 101525 15 21.5% 46462
16 42.7% 101680 16 21.5% 46572
16 42.9% 101292 15 21.4% 46338

Left-leaning RB 18 42.8% 102288 18 21.6% 46950
19 42.9% 102860 16 21.3% 46774
18 43.1% 101949 17 21.5% 46691
18 42.7% 102011 17 21.6% 46938
19 42.9% 102552 16 21.4% 46764



5 8 15 2312 25 29 31 32 38 43 49 56 58 63

15 49

8 25 38 58

5 12 23 29 32 43 56 63



21 29

23 27 302 7 11 14 20

135

8 26

17 47

38 54

42 51 58

41 44 50 53 57 5933 37

35

113

141

170

195

228

259 436

400

372

347

281

313

60

31 88



2 5 7 8 11 13 14 17 20 21 23 26 27 29 30

31 60 88 113 141 195170 259 228 281 313 347 372 400 436

33 35 37 38 41 42 44 47 50 51 53 54 57 58 59



1 2 3 4 6 7 8 9 10 1150

1 2 3 4 6 7 8 9 10 1150 12

and BEE

Subtree with keys Subtree with keys

between ANTless than ANT

Subtree with keys

greater than WASP

ANT BEE BUG FLEA FLY NITGNAT GRUB MITE MOTH TICK WASP



Formally, a B-tree with maximum degree M over some ordered key type is either

▶ empty, or
▶ a node with with d − 1 keys and d children, designated as lists keys and

children such that
▶ ⌈M/2⌉ ≤ d ≤ M,
▶ children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
▶ for all i ∈ [1, d − 1), children[i ] is a B-tree such that all of the keys in that tree are

greater than keys[i − 1] and less than keys[i ],
▶ and children[d − 1] is a B-tree such that all of the keys in that tree are greater

than keys[d − 2].



A N T \0

B E E \0

W A S P \0

96 100 140 1440 8 88 152 240 248 252

5 12 33

keys

eight bytes each position

values

four bytes each position

children

eight bytes each position

13

deg

node for keys
less than
ANT

node for keys

between
and BEE

ANT

node for keys

greater than

WASP

offset 

in struct



31 60 88 113 141 195170 259 228 281 313 347 372 400 436

33 35 37 38 41 42 44 47 50 51 53 54 57 58 592 5 7 8 11 13 14 17 20 21 23 26 27 29 30

470 977 1381 1859 2276 3190 3622 4149 4587 5063 5571 5994 6435 6888 7341



2 5 9 12 13

17

20 22 25

26

29 31 33 36

37

39 40 45 47

48

51 52 57



2 5 9 12 13

17

20 22 25

26

29 31 33 36

37

39 40

48

51 52 57474541



17

20 22 25

26

29 31 33 36

37

39 40

48

51 52 57474541

2 5

9

12 1310



12 13102 5

483726179

20 22 25 29 31 33 36 39 40 51 52 57474541



12 13102 5

483726179

51 52 5720 22 25 29 31 33 36

39 40

41

45 4742



12 13102 5 51 52 5745 474239 40

179 41 37 48

20 22 25 29 31 33 36

26



12 13102 5 51 52 5745 474239 40

179 41 37 48

20 22 25 29 31 33 36

26



(M − 1)︸ ︷︷ ︸
keys per
node

h−1∑
i=0

M i

︸ ︷︷ ︸
sum of
nodes
at each
level

= (M − 1)
Mh − 1

M − 1
= Mh − 1

n = Mh − 1

Mh = n + 1

h = logM(n + 1)



n = Mh − 1

Mh = n + 1

h = logM(n + 1)

h = logM
2
(n + 1) =

logM(n + 1)

1− logM 2



Cost of a search:

lgM · h = lgM · logM(n+1)
1−logM 2

= lgM

lg(n+1)
lgM

1− lg 2
lgM

= lg(n+1)

1− 1
lgM

= lgM
lgM−1 lg(n + 1)

Compare: 1.44 lg n for AVL trees, 2 lg n for RB trees.



Let c0 be the cost of searching at a node (proportional to lgM) and c1 be the cost of
reading a node from memory. The the cost of an entire search is

(c0 + c1)
logM(n + 1)

1− logM 2

Now, consolidate the constants by letting d = c0+c1
1−logM 2 , and we have

d logM(n + 1)



Coming up:

Do Traditional RB project (due Wed, Nov 5)
(Recommended: Do Left-leaning RB project for your own practice)

Due Mon, Nov 3 (end of day)—but hopefully you have spread it out
Read Sections 5.(4-6)
Do Exercise 5.13
Take quiz (red-black trees)

Due Thurs, Nov 6 (end of day)
Read Section 6.(1&2)
Do Exercises 6.(5–7)
Take quiz

Due Mon, Nov 10 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz


