Chapter 8, Strings:
» General introduction; string sorting (last week Friday)
» Tries (Today)

» Other string topics (Wednesday)
» Regular expressions

> Huffman-encoding
> Editdi
P Grammars—and-parsing
» Review for Tests 3 and 4 (Friday)

Today:
» Problem statement

» Main idea behind tries
» Code details:

> Node class
» Find

» Insertion
» Deletion



Coming up (the last):

Catch up on old projects . ..
Do Perfect Hashing project (due today, Monday, Dec 8)
Do Trie project (due Friday, Dec 12)

Due Today, Mon, Dec 8
Read Section 8.2



End-of-semester important dates

vVvvyVvVvVvyyy

vvyyypy

Tues, Dec 2: Test 4 practice problems made available.

Thurs, Dec 4: Last “normal” lab

Mon, Dec 8: Last project assigned

Tues, Dec 9: Last “normal” running of project grading script
Wed, Dec 10: Test 3 & 4 Review sheet distributed.

Thurs, Dec 11: Review lab (pick practice problems for Test 4)

Fri, Dec 12, AM: “Two-minute warning” running of project grading script (Canvas
gradebook will not be updated—see project report in your turn-in file)
Note that Fri, Dec 12 is the Last Day of Classes.

Fri, Dec 12, 11:59 PM: Official project deadline

Sat, Dec 13, when | wake up: Permissions to turn-in folders turned off
Mon, Dec 15: Project grading script run for final/semester grades
Thurs, Dec 18, 10:30am-12:30pm: Tests 3 and 4 (in lab)



In class and in the text, we see an iterative implementation of tries.

In the accompanying project, you'll implement the trie operations
recursively in the node.

public class LinkedList { public class LinkedList {
class Node { class Node {
int datum; int datum;
Node next; int next;
} boolean contains(int item) {
if (item == datum) return true;
Node root; else if (mext == null) return false;
else return next.contains(item);
public boolean contains(int item) { }
boolean found = false;
for (Node current = root; Node root;
! found and current != null;
current = current.next) public boolean contains(int item) {
found = current.datum == item; if (root == null) return false
return found; else return root.contains(item);
} }



ELIZA

/\

BETTINA LISE
\
/BESSIE /BUFFY }’-\NNE / LIZA
/BABETTE\ /BETTY\ /ELSA\ /LISSA\
ANNALIESE BESS BETTE BITS ELLA ISABEL LISETTE LIz
BETHANNE ELISE LIDDY LIZZIE

N 7N 2N N

BETH BETSY ELISA ELISSA LIBBY LISA LIZBETH TETTY






isTerminal false value null

I JK LMNOPQRSTUVWXY Z

cnttazen P T [FL] [FLIFITTTTTTEITTTT]

/

isTerminal false value null

children ‘ ‘ ‘ ‘

ABCDE FGH I JKLMNOPQRSTUVWXY Z

[T TP I T

i
l




Invariant 39. [Class invariant of TrieMap]
(a) For all nodes, the path to that node is a prefix to at least one key in the map.

(b) For all nodes, the node is terminal iff the path to that node is a key in the map.



In class and in the text, we see an iterative implementation of tries.

In the accompanying project, you'll implement the trie operations
recursively in the node.

public class LinkedList { public class LinkedList {
class Node { class Node {
int datum; int datum;
Node next; int next;
} boolean contains(int item) {
if (item == datum) return true;
Node root; else if (mext == null) return false;
else return next.contains(item);
public boolean contains(int item) { }
boolean found = false;
for (Node current = root; Node root;
! found and current != null;
current = current.next) public boolean contains(int item) {
found = current.datum == item; if (root == null) return false
return found; else return root.contains(item);
} }



