
Chapter 8, Strings:

▶ General introduction; string sorting (last week Friday)

▶ Tries (Today)
▶ Other string topics (Wednesday)

▶ Regular expressions
▶ Huffman encoding
▶ Edit distance
▶ Grammars and parsing

▶ Review for Tests 3 and 4 (Friday)

Today:

▶ Problem statement

▶ Main idea behind tries
▶ Code details:

▶ Node class
▶ Find
▶ Insertion
▶ Deletion



Coming up (the last):

Catch up on old projects . . .
Do Perfect Hashing project (due today, Monday, Dec 8)
Do Trie project (due Friday, Dec 12)

Due Today, Mon, Dec 8
Read Section 8.2



End-of-semester important dates

▶ Tues, Dec 2: Test 4 practice problems made available. ✓

▶ Thurs, Dec 4: Last “normal” lab ✓

▶ Mon, Dec 8: Last project assigned ✓

▶ Tues, Dec 9: Last “normal” running of project grading script

▶ Wed, Dec 10: Test 3 & 4 Review sheet distributed.

▶ Thurs, Dec 11: Review lab (pick practice problems for Test 4)

▶ Fri, Dec 12, AM: “Two-minute warning” running of project grading script (Canvas
gradebook will not be updated—see project report in your turn-in file)
Note that Fri, Dec 12 is the Last Day of Classes.

▶ Fri, Dec 12, 11:59 PM: Official project deadline

▶ Sat, Dec 13, when I wake up: Permissions to turn-in folders turned off

▶ Mon, Dec 15: Project grading script run for final/semester grades

▶ Thurs, Dec 18, 10:30am-12:30pm: Tests 3 and 4 (in lab)



In class and in the text, we see an iterative implementation of tries.

In the accompanying project, you’ll implement the trie operations
recursively in the node.

public class LinkedList {

class Node {

int datum;

Node next;

}

Node root;

public boolean contains(int item) {

boolean found = false;

for (Node current = root;

! found and current != null;

current = current.next)

found = current.datum == item;

return found;

}

}

public class LinkedList {

class Node {

int datum;

int next;

boolean contains(int item) {

if (item == datum) return true;

else if (next == null) return false;

else return next.contains(item);

}

Node root;

public boolean contains(int item) {

if (root == null) return false

else return root.contains(item);

}

}



ANNALIESE BESS

BABETTE

BETHANNE

BETH BETSY

BETTE

BETTY

BITS

ELISA ELISSA

ELSA

ELLA ISABEL

LIBBY LISA

LEANNEBESSIE BUFFY

BETTINA LISE

TETTY

LIZLISETTE

ELIZA

LISSA

ELISE LIDDY LIZZIE

LIZBETH

LIZA



S

E Y

T

S

A

I

Z

I

A

N

N

A

L

I

E

S

E

IE

B

E

T

T

E

S

I

E

A

N

N

E

Y

S
H

T

A

B

U

FT

S F

Y
SEA

Z

A

A

L

E

S
LI

A B

E

L

A

S

L

E

N

N

A

E

B

Y

D

Y T

T

E

S

E SA

A

Z

A

E

B

T

H

E

I
E

T

T

Y

T

B

D



A B C D E F G H I J K ML N O P Q R S T U V W X Y Z

children

valueisTerminal false null

A B C D E F G H I J K ML N O P Q R S T U V W X Y Z

children

valueisTerminal false null



Invariant 39. [Class invariant of TrieMap]

(a) For all nodes, the path to that node is a prefix to at least one key in the map.

(b) For all nodes, the node is terminal iff the path to that node is a key in the map.



In class and in the text, we see an iterative implementation of tries.

In the accompanying project, you’ll implement the trie operations
recursively in the node.

public class LinkedList {

class Node {

int datum;

Node next;

}

Node root;

public boolean contains(int item) {

boolean found = false;

for (Node current = root;

! found and current != null;

current = current.next)

found = current.datum == item;

return found;

}

}

public class LinkedList {

class Node {

int datum;

int next;

boolean contains(int item) {

if (item == datum) return true;

else if (next == null) return false;

else return next.contains(item);

}

Node root;

public boolean contains(int item) {

if (root == null) return false

else return root.contains(item);

}

}


