
Language model unit:

▶ What a language model is
▶ Analogy with human language

models
▶ Extrinsic evaluation
▶ Intrinsic evaluation

▶ Statistics about words
▶ n-grams
▶ Counts, hapaxes, ranks
▶ Zipf’s law

▶ Basic language models
▶ Training and testing
▶ Maximum likelihood
▶ Unigram, bigram, trigram

▶ Smoothing

▶ What’s wrong with maximum
likelihood

▶ Laplace smoothing
▶ What’s wrong with Laplace

smoothing

▶ Good-Turing smoothing

▶ Principle
▶ Practice

▶ Linear interpolation

▶ Alternate approaches

Basic definitions and axioms of probability

▶ Event is a primitive term. Informally, events are the things whose probability we
want to compute, estimate, or predict.

▶ The set of all events that we are modeling is the event space.

▶ For language models, the most common event is a word (type) occurring in a
given context (being a token). Language models can also be used for predicting
other linguistic events, like characters, word sequences, parts of speech, sentences,
. . .

▶ For event w , P(w) is the probability of w . Moreover, 0 ≤ P(w) ≤ 1

▶ If V is the event space, then
∑

w∈V P(w) = 1

▶ The conditional probability of event A in light of event B is

P(A|B) = P(A ∩ B)

P(B)

▶ Bayes’s theorem allows us to convert from one conditional probability to another

P(A|B) = P(B|A)P(A)
P(B)

Language
technology

Source Channel Observation

Text decompression Original text Compressor Compressed text

Sentiment analysis Writer’s sentiment Writing process Text whose
sentiment is to be
determined

Spelling correction Correctly spelled
word

Typing process Possibly misspelled
word

POS tagging POS Writing process Word

Machine translation Text in target
language

Writing process Text in original
language

argmax
S

P(S |O) = argmax
S

P(O|S)P(S)
P(O)

= argmax
S

P(O|S)P(S)

Russell Hoban and Lillian Hoban, Bread and Jam for Frances. I Can Read edition 2008; originally published 1964

P(Frances did not eat her egg)
= P(egg|Frances did not eat her) · P(Frances did not eat her)
= P(egg|...) · P(her|Frances did not eat) · P(Frances ...eat)

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) · · ·P(wn|w1:n−2)

P(wn|w1:n−1) ≈ P(wn|wn−1) or P(wn|wn−2wn−1)

Perplexity (and logs)

P(w0 · · ·wK−1)
−1
K = K

√
1

P(w0···wK−1)

=
(∏K−1

i=0 P(wi | h)
)−1

K
= K

√
1∏K−1

i=0 P(wi | h)

= 2
−1
K

∑K−1
i=0 lgP(wi |h)

lg xy = lg x + lg y

lg xy = y lg x

2lg x = x

Interpretation of perplexity:

We suspect that speech recognition people prefer to report on the larger non-
logarithmic numbers given by perplexity mainly because it is much easier to
impress funding bodies by saying that “we’ve managed to reduce perplexity
from 950 to only 540” than by saying that “we’ve reduced cross entropy from
9.9 to 9.1 bits.” However, perplexity does also have an intuitive reading: a
perplexity of k means that you are as surprised on average as you would have
been if you had had to guess between k equiprobable choices at each step.
Manning and Schütze, Foundations of Statistical Natural Language Processing, pg 78.

Summary so far (i.e., summary from last time)

▶ A language model is a probability function for linguistic events.

Words: P(w) Word sequences: P(w0w1), P(W0:N) Words in context: P(w |h)
▶ Humans have a natural language model.

▶ How good is a language model? We can evaluate a language model
▶ Extrinsically: Measure the performance of a tool that uses the language model

(example—text decompressor).
▶ Intrinsically: Compute the perplexity of a language model on a test text.

▶ Perplexity is a measure of how “surprised” the language model is by the text text.
▶ Perplexity is the inverse probability of the test text normalized (geometric mean) by

the size of the text.

K

√
1

P(w0 · · ·wK−1)
=

(
K−1∏
i=0

P(wi | h)

)−1
K

= 2
−1
K

∑K−1
i=0 lg P(wi |h)

▶ Language models are trained on textual data. By exploring textual data, we can observe
▶ The most common words are function words.
▶ The most common non-stopwords reveal subject matter and genre.
▶ A type’s frequency is proportional to the inverse of its rank (Zipf’s law)

f · r = C f ∝ 1

r
▶ The frequency of various n-grams changes over time.

A stationary process is one that does not change over time. This is clearly
wrong for language: new expressions regularly enter the language while others
die out. . . . Nevertheless, for a snapshot of text from a certain period, we
can assume that the language is near enough to unchanging, and so this is an
acceptable approximation to truth.

Manning and Schütze, Foundations of Statistical Natural Language Processing, pg 76.

The assumption that the probability of a word depends only on the previous
word is called a Markov assumption. Markov models are the class of proba-
bilistic models that assume we can predict the probability of some future unit
without looking too far into the past.

Jurafsky and Martin, Speech and Language Processing 3e, §3.1

Let V be the vocabulary; we also use V to mean |V | to reduce clutter.

Let N be the size of the training text and K be the size of the test text.

Let C (w) be the number of tokens of type w in the training text; similarly define
C (w1w2) etc.

Note that
∑

w∈V C (w) = N and
∑

winV P(w) = 1.

Maximum Likelihood Fallacy
“Which road leads to the Wicked Witch of the West?” asked Dorothy.

“There is no road,” answered the Guardian of the Gates. “No one ever wishes
to go that way.”

“How, then, are we to find her?” inquired the girl.

“That will be easy,” replied the man, “for when she knows you are in the
country of the Winkies she will find you, and make you all her slaves.”

“Perhaps not,” said the Scarecrow, “for we mean to destroy her.”

“Oh, that is different,” said the Guardian of the Gates. “No one has ever
destroyed her before, so I naturally thought she would make slaves of you, as
she has of the rest. ”

F Baum, The Wonderful Wizard of Oz

Perspectives on the maximum likelihood fallacy

▶ MLE is biased high for rare events and (infinitely) low for unseen events.

▶ Rare events are given too much probability mass, unseen events are given too
little.

▶ Predicting the future is not the same thing as predicting a randomly chosen past
event.

▶ If a word occurs once in training, what is most likely?
▶ That word actually does occur about once every N tokens.
▶ The word is actually more common than 1

N , but got unlucky in training.
▶ The word is actually less common than 1

N , but was lucky to be in the training set at
all.

Good-Turing smoothing

Let r range over frequencies; r = C (w) for some w ∈ V .

Let nr be the number of types that occur exactly r times in the training text. nr is the
frequency of frequency r .

nr = |{w ∈ V | C (w) = r}|

Thus n1 is the number of hapaxes, and n0 is the number of unseen words.

∞∑
r=0

nr = V

∞∑
r=0

(r · nr) = N

Good-Turing smoothing
Change the question from “What is the probability of seeing type w?” to “What is the
probability of seeing a type that I have seen r times before?”

r · nr
N

Change the question again to, “What is the probability of seeing a type for the r + 1st
time?”

(r + 1) · nr+1

N

This leads to the language model

PGT (w | C (w) = r) =
(r + 1)nr+1

N · nr
=

(r+1)nr+1

nr

N
=

(r+1)nr+1

N

nr

In particular, for unseen words,

PGT (w | C (w) = 0) =
n1

N · n0

Axiom 1. Good-Turing smoothing is good.

Axiom 2. Frequency (as frequency rank) vs frequency of frequency follows Zipf’s law.

Theorem. Laplace smoothing is bad. (Gale and Church, 1994)

Proof. Suppose Laplace smoothing is good. Then, by Axiom 1, its formula
would reduce to the formula for Good-Turing, that is,

(r+1)nr+1

Nnr
= r+1

N+V by equating Lapace and GT probabilities

for some type with count r
nr+1

nr
= N

N+V

nr+1 = N
N+V nr

nr = N
N+V nr−1 by change of variable

nr =
(

N
N+V

)r
n0

By Axiom 2, Zipf’s law predicts nr =
c
r for some c. Contradiction. □

Good-Turing with Katz’s k cut off:

PGT−Katz(w) =



n1
Nn0

if C (w) = 0 (unseen words)

(r + 1)nr+1

nr
− r (k+1)·nk+1

n1

N
(
1− (k+1)·nk+1

n1

) if 1 ≤ r = C (w) ≤ k (rare words)

C(w)
N otherwise (common words)

Linear interpolation

Given k language models P0, P1, . . .Pk−1 and weights λλλ = [λ0, λ1, . . . λk−1], the
interpolated model is

PLI (w) =
k−1∑
j=0

λjPj(w) = λ0P0(w) + λ1P1(w) + · · ·+ λk−1Pk−1(w)

Symbol and variable summary:

▶ Let M be the size of the held-out set (number of tokens).

▶ Let k be the number of constituent models

▶ Let j and jj range over constituent models let λj be the weight given to
constituent model j

▶ Let zij be the expected value of model j ’s contribution to the probability of token
wi

▶ Let ℓ(λλλ) is the average log likelihood

Theorem. If each constituent language model Pj is a proper language model and∑k−1
j=0 λj = 1, then PLI is a proper language model.

Proof. Suppose all that. Then

∑
w∈V

PLI (w) =
∑
w∈V

k−1∑
j=0

λjPj(w)

=
k−1∑
j=0

∑
w∈V

λjPj(w)

=
k−1∑
j=0

λj

∑
w∈V

Pj(w)

=
k−1∑
j=0

λj = 1 □

Coming up:

▶ Reading from J&M, Sections 3.(0-8) (Mon, Sept 15) At least 3.(0& 1) by
duedate; you may spread out the rest

▶ Language model quiz (Tues, Sept 23)

▶ Language model programming assignment (Fri, Sept 26)

▶ Reading from J&M, Sections 8.(0–4) (Wed, Sept 24)

