
CS 241 — Introduction to Problem Solving and Programming

Capstone example

The animals game

April 27, 2005

CS 241 1

Introduction

This example reviews

• Loops

• Recursion

• Linked structures

• Exceptions

• File I/O

And it also is an example of gaming and artificial intelligence.

CS 241 2

Introduction

Animals is a game where a guesser asks a player a series of questions to deduce
what animal the player is thinking of.

Specification:

Write a program to play the roll of the guesser. If it guesses incorrectly
(because the player is thinking of an animal unknown to it), it should learn
a new animal and how to ask a question about that animal. It should retain
this knowledge through successive runs of the program.

A program like that that demonstrates a growing expertise about something is an expert system.

CS 241 3

Knowledge base

How can we represent/store/organize knowledge like this?

Ask if it lives in water

If so, ask if it is an amphibian
If so, guess it is a frog
If not, guess it is an alligator

if not, guess it is a giraffe

A data structure to hold knowledge is called a knowledge base.

CS 241 4

Knowledge base

NO

Is it an amphibian

Frog Alligator

Giraffe

Does it live in water?
YES NO

YES

CS 241 5

Knowledge base

NO

Is it an amphibian

Frog Alligator

Does it live in water?
YES NO

YES NO

Does it have spots?

Giraffe Zebra

YES

CS 241 6

Knowledge base

NO

Is it an amphibian

Frog

Does it live in water?
YES NO

YES NO

Does it have spots?

Giraffe Zebra

YES NO

Does it have fins?

Dolphin Alligator

YES

CS 241 7

Knowledge base

The general data structure used here is a binary tree. It is similar to the graphs we
use for class hierarchies, except that every node has zero or two children.

We can store this with a linked structure, like linked lists, except (non-leaf) nodes
need to have two references.

Note that leaf and non-leaf nodes will be implemented differently, but they are both
nodes.

CS 241 8

Knowledge base

The general data structure used here is a binary tree. It is similar to the graphs we
use for class hierarchies, except that every node has zero or two children.

We can store this with a linked structure, like linked lists, except (non-leaf) nodes
need to have two references.

Note that leaf and non-leaf nodes will be implemented differently, but they are both
nodes.

Solution: Use an interface, implemented by two classes.

CS 241 9

Knowledge base implementation

public interface Node

public class Question
Node yes;
Node no;
String prompt;

public class Animal
String animal;

General algorithm: Iterate through the tree, asking questions until we hit a leaf
(animal) node; then guess.

CS 241 10

Iterative algorithm

Node head = ...

Node current = head;
while (current instanceof Question) {

char query = DocsIO.readchar(((Question) current).prompt);
if (query == ’y’ || query == ’Y’)

current = ((Question) current).yes;
else

current = ((Question) current).no;
}

System.out.println("Is the animal you are thinking of a(n) "
+ ((Animal) current).animal + "?");

CS 241 11

Iterative algorithms

Drawbacks:

• Casting is confusing, takes a lot of typing, is inelegant, and generally should be
avoided.

• Decision of what to do is based on type, which suggests using polymorphism.

Observation: In every case, a question is asked (for Animal nodes, the question
is the guess); the differences is what to do next (ask a new question, or end the
game). Leaf nodes are like a terminal case.

CS 241 12

Recursion warm-up

To help think recursively about the tree, consider computing the number of animals
in the tree.

public interface Node {
public int numberOfAnimals();

}
public class Question {

public int numberOfAnimals() {
return yes.numberOfAnimals() + no.numberOfAnimals();

}
}
public class Animal {

public int numberOfAnimals() {
return 1;

}
}

CS 241 13

Recursive algorithm

Solution:

Declare a method ask() in Node. Define it to be recursive in Question (it
asks a question on one of its child nodes) and make its definition in Animal
to be its base case.

public static void main(String[] args) {
Node top = ... ;

do
top.ask();

while (DocsIO.readchar("Do you want to play again?") == ’y’);
}

CS 241 14

Recursive implementation

public interface Node {
public void ask();

}

public class Animal implements Node {
private String animal;

public Node ask() {
System.out.println("Is the animal you are thinking of a(n) " +

animal + "?");
char c = DocsIO.readchar();
if (c == ’y’ || c == ’Y’)

System.out.println("I got it!");
}

}

CS 241 15

Recursive implementation

public class Question implements Node {
private Node yes;
private Node no;
private String prompt;

public void ask() {
System.out.println(prompt);
char c = DocsIO.readchar();
if (c == ’y’ || c == ’Y’)

yes = yes.ask();
else

no = no.ask();
}

}

CS 241 16

Learning

We also want the system to be able to learn new animals when the guess is wrong.

What happens (or should happen) when we add something to the tree.

CS 241 17

Learning algorithm

When a guess is a failure

• Ask what animal was being thought of.

• Ask for a question to differentiate between the two animals.

• Ask what the correct response (yes or no) would be for the new animal.

• Create a new question node based on the given question, with the current animal and the new

one as children (arranged based on the answer to the question).

• Make the current node’s parent point to the new question node.

CS 241 18

Learning

We need constructors for Animal and Question

public class Question implements Node {
...
public Question(String prompt, Node yes, Node no) {

this.prompt = prompt;
this.yes = yes;
this.no = no;

}
}
public class Animal implements Node {

...
public Animal(String animal) {

this.animal = animal;
}

}

CS 241 19

Learning

public void ask() {
...
else {

System.out.println("Ok, what animal were you thinking of?");
String newAnimal = DocsIO.readString();
Node newAnimalNode = new Animal(newAnimal);
System.out.println("Please enter a question to "

+ "differentiate between a(n) " + animal
+ " and a(n) " + newAnimal + ".");

String newQuestion = DocsIO.readString();
char d =

DocsIO.readchar("What would be the correct answer for a(n) "
+ newAnimal + "?");

CS 241 20

Learning

Question newQuestionNode;
if (d == ’y’ || d == ’Y’)

newQuestionNode = new Question(newQuestion, newAnimalNode,
this);

else
newQuestionNode = new Question(newQuestion, this,

newAnimalNode);

// Now what???
}

}

CS 241 21

Learning

Problem: The node needs to change something in its parent, but it does not even
know its parent.

A possible solution is to give each Animal node a parent link and give each Question
node a setter method for yes and no (which would require also the Animal to know
if it is its parent’s yes or no).

That would make this more complicated, and wouldn’t work if we were replacing
the top node.

CS 241 22

Learning

Solution: Make ask() return a node. Whenever we call ask on a node, replace
that node with what ask returns.

public interface Node {
public Node ask();

}
public class Animals {

public static void main(String[] args) {
...
do

top = top.ask();
while (DocsIO.readchar("Do you want to play again?") == ’y’);

}
}

CS 241 23

Learning

public class Question implements Node {

public Node ask() {
System.out.println(prompt);
char c = DocsIO.readchar();
if (c == ’y’ || c == ’Y’)

yes = yes.ask();
else

no = no.ask();
return this;

}
}

CS 241 24

Learning

public class Animal implements Node {

public Node ask() {
System.out.println("Is the animal you are thinking of a(n) " +

animal + "?");
char c = DocsIO.readchar();
if (c == ’y’ || c == ’Y’) {

System.out.println("I got it!");
return this;

}
else {

...
return newQuestionNode;

}
}

}

CS 241 25

Retaining knowledge

Now to allow for the program to remember the knowledge base between runs of
the program.

Obviously, this will require saving it to a file and loading it when the program is
run next.

The first thing to figure out is how to format the file.

CS 241 26

Saving the knowledge base in a file

<Node> ::= <Question> | <Animal>

<Question> ::= Q
<string>
<Node>
<Node>

<Animal> ::= A
<string>

CS 241 27

Writing to a file

public class Animals {
public static void main(String[] args) {

...
try {

PrintWriter pw =
new PrintWriter(new FileOutputStream("animals.dat"));

top.print(pw);
pw.close();

} catch (IOException ioe) {
System.out.println("Could not save animal knowledge.");

}

CS 241 28

Writing to a file

public class Question implements Node {
...
public void print(PrintWriter pw) throws IOException {

pw.println("Q");
pw.println(prompt);
yes.print(pw);
no.print(pw);

}
}

CS 241 29

Writing to a file

public class Animal implements Node {
...
public void print(PrintWriter pw) throws IOException {

pw.println("A");
pw.println(animal);

}
}

CS 241 30

Reading from file

Make the constructors recursive.

Each constructor will read off as much from the BufferedReader as it needs,
assuming the sentinel lines are consumed, and call constructors for its children,
passing them the BufferedReader.

CS 241 31

Reading from a file

public class Animals {
public static void main(String[] args) {

...
try {

BufferedReader br =
new BufferedReader(new FileReader("animals.dat"));

br.readLine();
top = new Question(br);
br.close();

} catch (IOException ioe) {
top = new Question("Does it live in water?",

new Animal("alligator"),
new Animal("giraffe"));

}

CS 241 32

Reading from a file

public class Question implements Node {
...
public Question(BufferedReader br) throws IOException {

prompt = br.readLine();
if (br.readLine().equals("Q"))

yes = new Question(br);
else

yes = new Animal(br);
if (br.readLine().equals("Q"))

no = new Question(br);
else

no = new Animal(br);
}

}

CS 241 33

Reading from a file

public class Animal implements Node {
...
public Animal(BufferedReader br) throws IOException {

this.animal = br.readLine();
}

}

CS 241 34

