
For the pre-assignment. . .

The main method receives as a parameter an array of Strings from the command
line.

public class SomeProgram {
public static void main(String[] args) {

System.out.println(args[0]);
System.out.println(args[1]);

}
}

...

> java SomeProgram ahoy aloha
ahoy
aloha

CS 241 1

For the pre-assignment. . .

The String method toCharArray returns an array of chars equivalent to the
String.

String str ="aloha";
char array = str.toCharArray();
System.out.println(array[0] + " " + array[1] + " " + array[2]);

...

a l o

CS 241 2

CS 241 — Introduction to Problem Solving and Programming

Object-Oriented Programming

Arrays

Feb 23, 2005

CS 241 3

Outline

• Review from last time: definition, syntax, etc

• How arrays are stored in memory

• Other issues with arrays

• Examples

CS 241 4

Arrays

An array is an ordered collection of elements all of the same type.

Analogies:

• A composite type or way of formatting data

• A mathematical sequence

• A collection of data

CS 241 5

Use of arrays

Form Example

Declaration: Base Type[] Identifier ; int[] scores;

Literal: { E 0, E 1, . . . E (n− 1) } scores = { 10, 15, 20 }

Indexed variable Identifier [Int Expression]
as expression: int current = scores[1];
in assignment: scores[1] = 30;

CS 241 6

Arrays in memory

Array variables are fundamentally different from other variables in how they are
stored in memory.

Regular variables are containers for a value of their type.

Array variables are containers for a reference to a place in memory holding an array.

30

int a

double b

int[] c

5

7.25

10

25

20

50

15

CS 241 7

Arrays in memory: new

Create an array using the keyword new. (This is called creating or allocating an array

dynamically, as opposed to using a literal, which would be statically.)

new Base Type[Int Expression]

int size = DocsIO.readint("How many scores? ");
int[] scores = new int[size];
for (int i = 0; i < size; i++)

scores[i] = DocsIO.readint("Next score--> ");

When an array is created, its elements have default values; for ints, 0.

CS 241 8

Arrays in memory: aliasing

Assigning an entire array to another array variable does not copy the array, but
rather it copies the reference. The two variables then refer to the same array; a
change to one is a change to the other.

int[] array1 = new int[5];
int[] array2 = array1;
array1[3] = 12;
System.out.println(array2[3]);

...

12

CS 241 9

Arrays in memory: passing to methods

Passing an array to a method will copy the memory reference to the parameter, so
changes in the method are changes to the original array.

int[] array1 = new int[5];
arrayMethod(array1);
System.out.println(array1[3]);

...

static void arrayMethod(int[] arr) arr[3] = 12;

...

12

CS 241 10

Null arrays

What if an array variable does not have an array in memory to point to? Then it
is set to a value called null.

If you try to index on a variable that is null, you will get a NullPointerException.
(Note this is a runtime error.)

int[] array1 = null;
System.out.println(array1[3]);

...

Exception in thread "main" java.lang.NullPointerException
at SomeProgram.main(SomeProgram.java:10)

CS 241 11

Length

Find the length of an array a using a.length. Notice, no parentheses. This is not
a method.

for (int i = 0; i < scores.length; i++)
System.out.println(scores[i]);

CS 241 12

Out of bounds

If you try to use an index that does not exist, you will get an
ArrayIndexOutOfBoundsException.

int[] array1 = new int[3];
System.out.println(array1[3]);

...

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3
at SomeProgram.main(SomeProgram.java:10)

CS 241 13

Naming conventions

Our textbook says:

Using a plural [name] seems to make sense, since the array holds more than
one element. However . . . programs often reed better if they use a singular
form, [because] when the array name is used in some sort of computation,
the name refers only to one element.

int[] scores = new int[20];
...
System.out.println("The score is " + scores[2]);

or

int[] score = new int[20];
...
System.out.println("The score is " + score[2]);

CS 241 14

Arrays as sequences and collections of data

Compute a section of the Fibonacci sequence. Use an array to represent/store
the sequence so we can refer to an arbitrary element after it has been
computed.

Write methods to compute the average, min, max, and range of a given set
of data.

CS 241 15

Arrays as sequences

static int[] makeFib(int n) {
// An array to hold the sequence
int[] fibSequence = new int[n];
fibSequence[0] = 0;
fibSequence[1] = 1;
for (int i = 2; i < n; i++)

fibSequence[i] = fibSequence[i-2] + fibSequence[i-1];
return fibSequence;

}

CS 241 16

Arrays as collections of data

static double average(int[] seq) {
double sum = 0; // The sum so far
for (int i = 0; i < seq.length; i++)

sum += seq[i];
return sum / seq.length;

}

CS 241 17

Arrays as collections of data

static int max(int[] seq) {
int max = seq[0]; // The max so far
for (int i = 1; i < seq.length; i++)

if (max < seq[i])
max = seq[i];

return max;
}

CS 241 18

Arrays as collections of data

static int min(int[] seq) {
int min = seq[0]; // The min so far
for (int i = 1; i < seq.length; i++)

if (min > seq[i])
min = seq[i];

return min;
}

CS 241 19

Arrays as structured data: time

Write a program to ask for two times (including date) and compare them.
Represent a time as an array. Include methods to compare two times, ask the
user to enter a time, and format a time nicely in a string.

CS 241 20

Arrays as structured data: time

public static void main(String[] args) {
System.out.println("First time");
int[] time1 = enterTime(); // One time
System.out.println("Second time");
int[] time2 = enterTime(); // The other time
String before = ""; // Blank or "not"
if (!before(time1, time2))

before = " not";
System.out.println(toString(time1) + " is" + before + " before "

+ toString(time2));
}

CS 241 21

Arrays as structured data: time

static int[] enterTime() {
int[] time = new int[6];
time[0] = DocsIO.readint("Year? ");
time[1] = DocsIO.readint("Month? ");
time[2] = DocsIO.readint("Date? ");
time[3] = DocsIO.readint("0=AM 1=PM? ");
time[4] = DocsIO.readint("Hour? ");
time[5] = DocsIO.readint("Minute? ");
return time;

}

CS 241 22

Arrays as structured data: time

static boolean before(int[] time1, int[] time2) {
for (int i = 0; i < 6; i ++)

if (i == 4) {
if (time1[i] % 12 < time2[i] % 12)

return true;
else if (time1[i] % 12> time2[i] % 12)

return false;
}
else {

if (time1[i] < time2[i])
return true;

else if (time1[i] > time2[i])
return false;

}
return false;

}

CS 241 23

Arrays as structured data: time

static String toString(int[] time) {
String toReturn = time[4] + ":" + time[5];
if (time[3] == 0)

toReturn += " AM";
else

toReturn += " PM";
switch(time[1]) {
case 1: toReturn += " January ";break;
case 2: toReturn += " February ";break;
case 3: toReturn += " March ";break;
case 4: toReturn += " April ";break;
case 5: toReturn += " May ";break;
case 6: toReturn += " June ";break;
case 7: toReturn += " July ";break;
case 8: toReturn += " August ";break;
case 9: toReturn += " September ";break;
case 10: toReturn += " October ";break;
case 11: toReturn += " November ";break;
case 12: toReturn += " December ";break;
}
toReturn += time[2] + ", " + time[0];
return toReturn;

}

CS 241 24

Arrays as structured data: points

Write a program that will ask a user for two points and then plot them and
calculate the distance. Represent a point with an array.

CS 241 25

Arrays as structured data: points

public static void main(String[] args) {
double[] point1 = new double[2]; // One point
point1[0] = DocsIO.readdouble("x1: ");
point1[1] = DocsIO.readdouble("y1: ");
double[] point2 = new double[2]; // The other point
point2[0] = DocsIO.readdouble("x2: ");
point2[1] = DocsIO.readdouble("y2: ");
plot(point1, point2);
System.out.println("Distance: " + distance(point1, point2));

}

CS 241 26

Arrays as structured data: points

static double distance(double[] point1, double[] point2) {
double distance1 = point1[0] - point2[0];
double distance2 = point1[1] - point2[1];
return Math.sqrt((distance1 * distance1) +

(distance2 * distance2));
}

CS 241 27

Summary

Understand the following concepts

• Array

• Array types

• Array literal

• Subscript / index

• Indexed variable

• new

• How arrays are stored

• null and null pointer exceptions

• Out of bounds exceptions

CS 241 28

