Object-Oriented Programming

First look at classes

CS 241

A Is a category of data. It determines

e how much memory an element of this type takes up

e how to interpret data so that it is used as an element of this type

CS 241

Primitive types: int, double, boolean, char, long, short, float, byte

Array types are different:

e Composite types

e Reference types

CS 241

Problem:

Write a program for a library circulation program. Model books and patrons,
keeping track essential information about books (name, author, call number,
pages, . ..) and patrons (name, id, . ..), as well as information about how
the books and patrons interact (for books, the patron currently holding it and
the due date; for patrons, the books currently checked out and any fines).

CS 241

If we were to make a composite type for book, it would need

o A title

e An author

e The number of pages

e A call number

e A patron who currently has the book checked out

e The number of days until it is due back.

CS 241

If we were to make a composite type for book, it would need

o A title String

e An author

e The number of pages

e A call number

e A patron who currently has the book checked out

e The number of days until it is due back.

CS 241

If we were to make a composite type for book, it would need

o A title String

e An author String

e The number of pages

e A call number

e A patron who currently has the book checked out

e The number of days until it is due back.

CS 241

If we were to make a composite type for book, it would need

o A title String

e An author String

e The number of pages int

e A call number

e A patron who currently has the book checked out

e The number of days until it is due back.

CS 241

If we were to make a composite type for book, it would need

o A title String

e An author String

e The number of pages int

e A call number int

e A patron who currently has the book checked out

e The number of days until it is due back.

CS 241

If we were to make a composite type for book, it would need

o A title String

e An author String

e The number of pages int

e A call number int

e A patron who currently has the book checked out 777

e The number of days until it is due back.

CS 241

10

If we were to make a composite type for book, it would need

o A title String

e An author String

e The number of pages int

e A call number int

e A patron who currently has the book checked out 777

e The number of days until it is due back. int

CS 241

11

If we were to make a composite type for patron, it would need

e A name
e An id
e [he amount owed in fines

e The books currently checked out

CS 241

12

If we were to make a composite type for patron, it would need

e A name String
e An id
e [he amount owed in fines

e The books currently checked out

CS 241

13

If we were to make a composite type for patron, it would need

e A name String
e An id int
e [he amount owed in fines

e The books currently checked out

CS 241

14

If we were to make a composite type for patron, it would need

e A name String
e Anid int
e [he amount owed in fines int

e The books currently checked out

CS 241

15

If we were to make a composite type for patron, it would need

e A name String
e Anid int
e [he amount owed in fines int

e The books currently checked out Book[]

CS 241

16

If we were to make a composite type for book, it would need

o A title String

e An author String

e The number of pages int

e A call number int

e A patron who currently has the book checked out Patronl[]

e The number of days until it is due back. int

CS 241

17

Arrays have two major draw backs:

e All elements must be the same type

e Elements cannot be associated by a name, only a number.

CS 241

18

In general, constructs like this in programming languages are called struct(ure)s or
records, and their components are called fields.

The construct in Java that gives this capability (an a lot more) is the . lts
components are called , and they look like any other variables.

public class Class_Name {
Type Instance_Variable;

CS 241 19

public class Book {
String title;

String author;
int pages;

int callNumber;
Patron user;

int daysTillDue;

CS 241

20

public class Patron {
String name;

int id;
int fines;

Book[] checkedOut;

CS 241

21

Like arrays, classes are reference types. A variable with a class type is a reference
to an area in memory.

And Is an area of computer memory which can be referred to by a reference
an interpreted as an element of a type. An array is an example of an object.

Create a new object of a class using new. Such an object is an of a class;
creating a new on Is

Book aBook = new Book();

Why the parentheses? It's actually a method, as we'll see later. . .

CS 241 22

Use the instance variables by means of dot notation on an expression which produces
a reference to an object (that is, an expression with a class type).

Book book = new Book();

book.title = "The Aeneid";

book.author = "Virgil";

Patron patron = new Patron();

patron.name = "QOvid";

patron.checkedOut = new Book[5];

patron.checkOut [0] = book;

System.out.println(patron.name + " has checked out "
+ patron.checkedOut [0] .name) ;

CS 241 23

Now understand why length does not have parentheses for arrays.

int[] array;

int n = array.length;

length is an instance variable, specially defined for any array.

CS 241

24

Like arrays. . .

e Using == will compare locations in memory, not contents.
e An assignment to another variable will result in aliasing.

e Assigning null means the variable refers to nothing (and attempting to read an
instance variable will produce a NullPointerException.

CS 241 25

The class is the main unit of modularity in Java.
Put each class in a separate file, called Class_Name. java.
Some classes have main methods.
Library. java:
public class Library {
public static void main(String[] args) {
Book. java:

public class Book {

CS 241

26

Naming convention: Class names should be like variable names except the first
letter should be capitalized.

Documentation: Each instance variable should be documented like other variables,
but use block style,

public class Patron {
VAT
* The patron’s name
*/

String name;

/**

* The patron’s id (also serves as index into the
* array of patrons in the driver)

*/

int id;

CS 241 97

public class Library {

CS 241

public static void main(String[] args) {
Book[] shelf =
Patron[] membership = new Patron[20];

for(;;) {

System.
System.
System.
System.
System.
System.
System.

out
out
out
out
out
out
out

new Book[50];

.println("1.
.println("2.
.println("3.
.println("4.
.println("5.
.println("6.
.println("7.

Add a new book to the shelf");
Add a new patron");

Check out a book");

Return a book");

Pay fines");

Start a new day");

Quit");

28

CS 241

int query = DocsIO.readint("Your choice--> ");

switch(query) {

case
case
case
case
case
case
case

}

1:

o O W N

addBook (shelf); break;
addPatron(membership); break;
checkout (shelf, membership); break;

: returnBook(membership); break;
: payFine(membership); break;

: newDay(shelf); break;

7.
default: System.out.println("Invalid choice.");

return;

29

static void addBook(Book[] shelf) {
Book book = new Book();

book.callNumber = 0O;
while (shelf[book.callNumber] !'= null) {
book.callNumber++;
if (book.callNumber > shelf.length) {
System.out.println("Shelf full.");

return;

}

shelf [book.callNumber] = book;

book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint ("Number of pages? ");

CS 241

30

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] !'= null) {
book.callNumber++;
if (book.callNumber > shelf.length) {
System.out.println("Shelf full.");

return;

}

shelf [book.callNumber] = book;

book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint ("Number of pages? ");

CS 241

31

static void addBook(Book[] shelf) {
Book book = new Book();

book.callNumber = 0O;
while (shelf[book.callNumber] '= null) {
book.callNumber++;
if (book.callNumber > shelf.length) {
System.out.println("Shelf full.");

return;

}

shelf [book.callNumber] = book;

book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint ("Number of pages? ");

CS 241

32

static void addBook(Book[] shelf) {
Book book = new Book();

book.callNumber = 0O;
while (shelf[book.callNumber] !'= null) {
book.callNumber++;
if (book.callNumber > shelf.length) {
System.out.println("Shelf full.");

return;

}

shelf [book.callNumber] = book;

book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint ("Number of pages? ");

CS 241

33

static void addBook(Book[] shelf) {
Book book = new Book();

book.callNumber = 0O;
while (shelf[book.callNumber] !'= null) {
book.callNumber++;
if (book.callNumber > shelf.length) {
System.out.println("Shelf full.");

return;

}

shelf [book.callNumber] = book;

book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint ("Number of pages? ");

CS 241

34

static void addBook(Book[] shelf) {
Book book = new Book();

book.callNumber = 0O;
while (shelf[book.callNumber] !'= null) {
book.callNumber++;
if (book.callNumber > shelf.length) {
System.out.println("Shelf full.");

return;

}

shelf [book.callNumber] = book;

book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint ("Number of pages? ");

CS 241

35

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = O;
while (membership[patron.id] !'= null) {
patron.id++;
if (patron.id > membership.length) {
System.out.println("Membership rolls full.");
return;

}

membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");

int numBooks =
DocsI0.readint ("How many books may this patron check out at once? ");

patron.checkedOut = new Book[numBooks];

CS 241 36

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = O;
while (membership([patron.id] !'= null) {
patron.id++;
if (patron.id > membership.length) {
System.out.println("Membership rolls full.");
return;

}

membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");

int numBooks =
DocsI0.readint ("How many books may this patron check out at once? ");

patron.checkedOut = new Book[numBooks];

CS 241 37

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = O;
while (membership[patron.id] !'= null) {
patron.id++;
if (patron.id > membership.length) {
System.out.println("Membership rolls full.");
return;

}

membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");

int numBooks =
DocsI0.readint ("How many books may this patron check out at once? ");

patron.checkedOut = new Book[numBooks];

CS 241 38

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = O;
while (membership[patron.id] !'= null) {
patron.id++;
if (patron.id > membership.length) {
System.out.println("Membership rolls full.");
return;

}

membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");

int numBooks =
DocsIO.readint ("How many books may this patron check out at once? ");

patron.checkedOut = new Book[numBooks] ;

CS 241 39

CS 241

static void checkout(Book[] shelf, Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronIld < O || patronId > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return,;
¥
int checkoutNumber = 0;
while (membership[patronId].checkedOut[checkoutNumber] != null) {
checkoutNumber++;
if (checkoutNumber > membership[patronId].checkedOut.length) {
System.out.println(membership[patronId] .name +
" cannot check out any more books.");
return;

40

CS 241

41

CS 241

static void checkout(Book[] shelf, Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronld < O || patronld > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return,;
}
int checkoutNumber = 0;
while (membership[patronId].checkedOut[checkoutNumber] != null) {
checkoutNumber++;
if (checkoutNumber > membership[patronId].checkedOut.length) {
System.out.println(membership[patronIld] .name +
" cannot check out any more books.");
return;

42

CS 241

43

CS 241

int callNum = DocsIO.readint("Book call number? ");
if (callNum < O || callNum > shelf.length || shelf[callNum]
System.out.println("Book nonexistant");
return;
¥
if (shelf[callNum].user != null) {
System.out.println("Book already checked out.");
return;
}
shelf [callNum] .daysTillDue =
DocsIO.readint ("How many days until due? ");
shelf [callNum] .user = membership[patronId];
membership[patronId] .checkedOut [checkoutNumber] =
shelf [callNum] ;

null) {

44

int callNum = DocsIO.readint("Book call number? ");
if (callNum < O || callNum > shelf.length || shelf[callNum] == null) {
System.out.println("Book nonexistant");
return;
}
if (shelf[callNum].user != null) {
System.out.println("Book already checked out.");
return;
}
shelf [callNum] .daysTillDue =
DocsI0.readint ("How many days until due? ");
shelf [callNum] .user = membership[patronId];
membership[patronld].checkedOut [checkoutNumber] =
shelf [callNum] ;

CS 241 45

int callNum = DocsIO.readint("Book call number? ");
if (callNum < O || callNum > shelf.length || shelf[callNum] == null) {
System.out.println("Book nonexistant");
return;
}
if (shelf[callNum].user !'= null) {
System.out.println("Book already checked out.");
return,
}
shelf [callNum] .daysTillDue =
DocsI0.readint ("How many days until due? ");
shelf [callNum] .user = membership[patronId];
membership[patronId].checkedOut [checkoutNumber] =
shelf [callNum] ;

CS 241 46

int callNum = DocsIO.readint("Book call number? ");

if (callNum < O || callNum > shelf.length || shelf[callNum] == null) {
System.out.println("Book nonexistant");
return;

}

if (shelf[callNum].user != null) {
System.out.println("Book already checked out.");
return;

}

shelf [callNum] .daysTillDue =
DocsI0.readint("How many days until due? ");

shelf [callNum] .user = membership[patronId];

membership[patronId] .checkedOut [checkoutNumber] =
shelf [callNum] ;

CS 241 47

CS 241

static void returnBook(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronIld < O || patronId > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}

int callNum = DocsIO.readint("Book call number? ");

48

CS 241

int checkoutNumber = -1;
for (int i = 0; i < membership[patronId].checkedOut.length; i++)
if (membership[patronId].checkedOut[i] '= null &&
membership [patronId].checkedOut[i].callNumber == callNum) {
checkoutNumber = 1;
break;
}
if (checkoutNumber == -1) {
System.out.println("No such book checked out.");
return;

49

CS 241

if (membership[patronId].checkedOut [checkoutNumber].daysTillDue < 0)
membership[patronId] .fines +=
50 * (0 -
membership[patronld].checkedOut [checkoutNumber] .daysTillDue) ;
membership[patronId] .checkedOut [checkoutNumber].user = null;
membership[patronld].checkedOut [checkoutNumber] = null;

50

static void payFine(Patron[] membership) {
int patronIld = DocsIO.readint("Patron id? ");
if (patronIld < O || patronId > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;
¥
System.out.println(membership[patronId] .name + " owes
+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId].fines -= payment;

CS 241

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < O || patronId > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;
}
System.out.println(membership[patronId] .name + " owes
+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId] .fines -= payment;

CS 241

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < O || patronId > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;
}
System.out.println(membership[patronId] .name + " owes
+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId] .fines -= payment;

CS 241

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < O || patronId > membership.length ||
membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;
}
System.out.println(membership[patronId] .name + " owes
+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId] .fines -= payment;

CS 241

CS 241

static void newDay(Book[] shelf) {
for (int i = 0; i < shelf.length; i++)
if (shelf[i] '= null && shelf[i] .user !'= null)
shelf[i] .daysTillDue -= 1;

55

