
CS 241 — Introduction to Problem Solving and Programming

Object-Oriented Programming

First look at classes

Feb 28, 2005

CS 241 1

Types

A type is a category of data. It determines

• how much memory an element of this type takes up

• how to interpret data so that it is used as an element of this type

CS 241 2

Types

Primitive types: int, double, boolean, char, long, short, float, byte

Array types are different:

• Composite types

• Reference types

CS 241 3

Arrays

Problem:

Write a program for a library circulation program. Model books and patrons,
keeping track essential information about books (name, author, call number,
pages, . . .) and patrons (name, id, . . .), as well as information about how
the books and patrons interact (for books, the patron currently holding it and
the due date; for patrons, the books currently checked out and any fines).

CS 241 4

Library example

If we were to make a composite type for book, it would need

• A title

• An author

• The number of pages

• A call number

• A patron who currently has the book checked out

• The number of days until it is due back.

CS 241 5

Library example

If we were to make a composite type for book, it would need

• A title String

• An author

• The number of pages

• A call number

• A patron who currently has the book checked out

• The number of days until it is due back.

CS 241 6

Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages

• A call number

• A patron who currently has the book checked out

• The number of days until it is due back.

CS 241 7

Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number

• A patron who currently has the book checked out

• The number of days until it is due back.

CS 241 8

Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out

• The number of days until it is due back.

CS 241 9

Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out ???

• The number of days until it is due back.

CS 241 10

Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out ???

• The number of days until it is due back. int

CS 241 11

Library example

If we were to make a composite type for patron, it would need

• A name

• An id

• The amount owed in fines

• The books currently checked out

CS 241 12

Library example

If we were to make a composite type for patron, it would need

• A name String

• An id

• The amount owed in fines

• The books currently checked out

CS 241 13

Library example

If we were to make a composite type for patron, it would need

• A name String

• An id int

• The amount owed in fines

• The books currently checked out

CS 241 14

Library example

If we were to make a composite type for patron, it would need

• A name String

• An id int

• The amount owed in fines int

• The books currently checked out

CS 241 15

Library example

If we were to make a composite type for patron, it would need

• A name String

• An id int

• The amount owed in fines int

• The books currently checked out Book[]

CS 241 16

Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out Patron[]

• The number of days until it is due back. int

CS 241 17

Arrays

Arrays have two major draw backs:

• All elements must be the same type

• Elements cannot be associated by a name, only a number.

CS 241 18

Records

In general, constructs like this in programming languages are called struct(ure)s or
records, and their components are called fields.

The construct in Java that gives this capability (an a lot more) is the class. Its
components are called instance variables, and they look like any other variables.

public class Class Name {
Type Instance Variable;
. . .

}

CS 241 19

Book

public class Book {
String title;

String author;

int pages;

int callNumber;

Patron user;

int daysTillDue;
}

CS 241 20

Patron

public class Patron {
String name;

int id;

int fines;

Book[] checkedOut;
}

CS 241 21

Classes

Like arrays, classes are reference types. A variable with a class type is a reference
to an area in memory.

And object is an area of computer memory which can be referred to by a reference
an interpreted as an element of a type. An array is an example of an object.

Create a new object of a class using new. Such an object is an instance of a class;
creating a new on is instantiation.

Book aBook = new Book();

Why the parentheses? It’s actually a method, as we’ll see later. . .

CS 241 22

Classes

Use the instance variables by means of dot notation on an expression which produces
a reference to an object (that is, an expression with a class type).

Book book = new Book();
book.title = "The Aeneid";
book.author = "Virgil";
Patron patron = new Patron();
patron.name = "Ovid";
patron.checkedOut = new Book[5];
patron.checkOut[0] = book;
System.out.println(patron.name + " has checked out "

+ patron.checkedOut[0].name);

CS 241 23

Arrays

Now understand why length does not have parentheses for arrays.

int[] array;
...

int n = array.length;

length is an instance variable, specially defined for any array.

CS 241 24

Classes

Like arrays. . .

• Using == will compare locations in memory, not contents.

• An assignment to another variable will result in aliasing.

• Assigning null means the variable refers to nothing (and attempting to read an
instance variable will produce a NullPointerException.

CS 241 25

Practical details

The class is the main unit of modularity in Java.

Put each class in a separate file, called Class Name.java.

Some classes have main methods.

Library.java:

public class Library {
public static void main(String[] args) {

...

Book.java:

public class Book {
...

CS 241 26

Practical Details

Naming convention: Class names should be like variable names except the first
letter should be capitalized.

Documentation: Each instance variable should be documented like other variables,
but use block style,

public class Patron {
/**
* The patron’s name
*/
String name;

/**
* The patron’s id (also serves as index into the
* array of patrons in the driver)
*/
int id;

CS 241 27

Library example

public class Library {
public static void main(String[] args) {

Book[] shelf = new Book[50];
Patron[] membership = new Patron[20];

for(;;) {
System.out.println("1. Add a new book to the shelf");
System.out.println("2. Add a new patron");
System.out.println("3. Check out a book");
System.out.println("4. Return a book");
System.out.println("5. Pay fines");
System.out.println("6. Start a new day");
System.out.println("7. Quit");

CS 241 28

Library example

int query = DocsIO.readint("Your choice--> ");
switch(query) {
case 1: addBook(shelf); break;
case 2: addPatron(membership); break;
case 3: checkout(shelf, membership); break;
case 4: returnBook(membership); break;
case 5: payFine(membership); break;
case 6: newDay(shelf); break;
case 7: return;
default: System.out.println("Invalid choice.");
}

}
}

CS 241 29

Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}

CS 241 30

Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}

CS 241 31

Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}

CS 241 32

Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}

CS 241 33

Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}

CS 241 34

Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}

CS 241 35

Library example

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = 0;
while (membership[patron.id] != null) {

patron.id++;
if (patron.id > membership.length) {

System.out.println("Membership rolls full.");
return;

}
}
membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");
int numBooks =

DocsIO.readint("How many books may this patron check out at once? ");
patron.checkedOut = new Book[numBooks];

}

CS 241 36

Library example

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = 0;
while (membership[patron.id] != null) {

patron.id++;
if (patron.id > membership.length) {

System.out.println("Membership rolls full.");
return;

}
}
membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");
int numBooks =

DocsIO.readint("How many books may this patron check out at once? ");
patron.checkedOut = new Book[numBooks];

}

CS 241 37

Library example

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = 0;
while (membership[patron.id] != null) {

patron.id++;
if (patron.id > membership.length) {

System.out.println("Membership rolls full.");
return;

}
}
membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");
int numBooks =

DocsIO.readint("How many books may this patron check out at once? ");
patron.checkedOut = new Book[numBooks];

}

CS 241 38

Library example

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = 0;
while (membership[patron.id] != null) {

patron.id++;
if (patron.id > membership.length) {

System.out.println("Membership rolls full.");
return;

}
}
membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?");
int numBooks =

DocsIO.readint("How many books may this patron check out at once? ");
patron.checkedOut = new Book[numBooks];

}

CS 241 39

Library example

static void checkout(Book[] shelf, Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
int checkoutNumber = 0;
while (membership[patronId].checkedOut[checkoutNumber] != null) {

checkoutNumber++;
if (checkoutNumber > membership[patronId].checkedOut.length) {

System.out.println(membership[patronId].name +
" cannot check out any more books.");

return;
}

}

CS 241 40

CS 241 41

Library example

static void checkout(Book[] shelf, Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
int checkoutNumber = 0;
while (membership[patronId].checkedOut[checkoutNumber] != null) {

checkoutNumber++;
if (checkoutNumber > membership[patronId].checkedOut.length) {

System.out.println(membership[patronId].name +
" cannot check out any more books.");

return;
}

}

CS 241 42

CS 241 43

Library example

int callNum = DocsIO.readint("Book call number? ");
if (callNum < 0 || callNum > shelf.length || shelf[callNum] == null) {

System.out.println("Book nonexistant");
return;

}
if (shelf[callNum].user != null) {

System.out.println("Book already checked out.");
return;

}
shelf[callNum].daysTillDue =

DocsIO.readint("How many days until due? ");
shelf[callNum].user = membership[patronId];
membership[patronId].checkedOut[checkoutNumber] =

shelf[callNum];
}

CS 241 44

Library example

int callNum = DocsIO.readint("Book call number? ");
if (callNum < 0 || callNum > shelf.length || shelf[callNum] == null) {

System.out.println("Book nonexistant");
return;

}
if (shelf[callNum].user != null) {

System.out.println("Book already checked out.");
return;

}
shelf[callNum].daysTillDue =

DocsIO.readint("How many days until due? ");
shelf[callNum].user = membership[patronId];
membership[patronId].checkedOut[checkoutNumber] =

shelf[callNum];
}

CS 241 45

Library example

int callNum = DocsIO.readint("Book call number? ");
if (callNum < 0 || callNum > shelf.length || shelf[callNum] == null) {

System.out.println("Book nonexistant");
return;

}
if (shelf[callNum].user != null) {

System.out.println("Book already checked out.");
return;

}
shelf[callNum].daysTillDue =

DocsIO.readint("How many days until due? ");
shelf[callNum].user = membership[patronId];
membership[patronId].checkedOut[checkoutNumber] =

shelf[callNum];
}

CS 241 46

Library example

int callNum = DocsIO.readint("Book call number? ");
if (callNum < 0 || callNum > shelf.length || shelf[callNum] == null) {

System.out.println("Book nonexistant");
return;

}
if (shelf[callNum].user != null) {

System.out.println("Book already checked out.");
return;

}
shelf[callNum].daysTillDue =

DocsIO.readint("How many days until due? ");
shelf[callNum].user = membership[patronId];
membership[patronId].checkedOut[checkoutNumber] =

shelf[callNum];
}

CS 241 47

Library example

static void returnBook(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
int callNum = DocsIO.readint("Book call number? ");

}

CS 241 48

Library example

int checkoutNumber = -1;
for (int i = 0; i < membership[patronId].checkedOut.length; i++)

if (membership[patronId].checkedOut[i] != null &&
membership[patronId].checkedOut[i].callNumber == callNum) {
checkoutNumber = i;
break;

}
if (checkoutNumber == -1) {

System.out.println("No such book checked out.");
return;

}

CS 241 49

Library example

if (membership[patronId].checkedOut[checkoutNumber].daysTillDue < 0)
membership[patronId].fines +=

50 * (0 -
membership[patronId].checkedOut[checkoutNumber].daysTillDue);

membership[patronId].checkedOut[checkoutNumber].user = null;
membership[patronId].checkedOut[checkoutNumber] = null;

}

CS 241 50

Library example

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
System.out.println(membership[patronId].name + " owes "

+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId].fines -= payment;

}

CS 241 51

Library example

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
System.out.println(membership[patronId].name + " owes "

+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId].fines -= payment;

}

CS 241 52

Library example

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
System.out.println(membership[patronId].name + " owes "

+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId].fines -= payment;

}

CS 241 53

Library example

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
System.out.println(membership[patronId].name + " owes "

+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId].fines -= payment;

}

CS 241 54

Library example

static void newDay(Book[] shelf) {
for (int i = 0; i < shelf.length; i++)

if (shelf[i] != null && shelf[i].user != null)
shelf[i].daysTillDue -= 1;

}
}

CS 241 55

