
CS 241 — Introduction to Problem Solving and Programming

Object-Oriented Programming

First look at classes

Feb 28, 2005
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Types

A type is a category of data. It determines

• how much memory an element of this type takes up

• how to interpret data so that it is used as an element of this type
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Types

Primitive types: int, double, boolean, char, long, short, float, byte

Array types are different:

• Composite types

• Reference types
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Arrays

Problem:

Write a program for a library circulation program. Model books and patrons,
keeping track essential information about books (name, author, call number,
pages, . . . ) and patrons (name, id, . . . ), as well as information about how
the books and patrons interact (for books, the patron currently holding it and
the due date; for patrons, the books currently checked out and any fines).
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Library example

If we were to make a composite type for book, it would need

• A title

• An author

• The number of pages

• A call number

• A patron who currently has the book checked out

• The number of days until it is due back.
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Library example
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• The number of days until it is due back.
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Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out ???

• The number of days until it is due back.
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Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out ???

• The number of days until it is due back. int
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Library example

If we were to make a composite type for patron, it would need

• A name

• An id

• The amount owed in fines

• The books currently checked out
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Library example

If we were to make a composite type for patron, it would need

• A name String

• An id int

• The amount owed in fines int

• The books currently checked out Book[]
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Library example

If we were to make a composite type for book, it would need

• A title String

• An author String

• The number of pages int

• A call number int

• A patron who currently has the book checked out Patron[]

• The number of days until it is due back. int
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Arrays

Arrays have two major draw backs:

• All elements must be the same type

• Elements cannot be associated by a name, only a number.
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Records

In general, constructs like this in programming languages are called struct(ure)s or
records, and their components are called fields.

The construct in Java that gives this capability (an a lot more) is the class. Its
components are called instance variables, and they look like any other variables.

public class Class Name {
Type Instance Variable;
. . .

}
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Book

public class Book {
String title;

String author;

int pages;

int callNumber;

Patron user;

int daysTillDue;
}
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Patron

public class Patron {
String name;

int id;

int fines;

Book[] checkedOut;
}
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Classes

Like arrays, classes are reference types. A variable with a class type is a reference
to an area in memory.

And object is an area of computer memory which can be referred to by a reference
an interpreted as an element of a type. An array is an example of an object.

Create a new object of a class using new. Such an object is an instance of a class;
creating a new on is instantiation.

Book aBook = new Book();

Why the parentheses? It’s actually a method, as we’ll see later. . .
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Classes

Use the instance variables by means of dot notation on an expression which produces
a reference to an object (that is, an expression with a class type).

Book book = new Book();
book.title = "The Aeneid";
book.author = "Virgil";
Patron patron = new Patron();
patron.name = "Ovid";
patron.checkedOut = new Book[5];
patron.checkOut[0] = book;
System.out.println(patron.name + " has checked out "

+ patron.checkedOut[0].name);
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Arrays

Now understand why length does not have parentheses for arrays.

int[] array;
...

int n = array.length;

length is an instance variable, specially defined for any array.
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Classes

Like arrays. . .

• Using == will compare locations in memory, not contents.

• An assignment to another variable will result in aliasing.

• Assigning null means the variable refers to nothing (and attempting to read an
instance variable will produce a NullPointerException.
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Practical details

The class is the main unit of modularity in Java.

Put each class in a separate file, called Class Name.java.

Some classes have main methods.

Library.java:

public class Library {
public static void main(String[] args) {

...

Book.java:

public class Book {
...
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Practical Details

Naming convention: Class names should be like variable names except the first
letter should be capitalized.

Documentation: Each instance variable should be documented like other variables,
but use block style,

public class Patron {
/**
* The patron’s name
*/
String name;

/**
* The patron’s id (also serves as index into the
* array of patrons in the driver)
*/
int id;
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Library example

public class Library {
public static void main(String[] args) {

Book[] shelf = new Book[50];
Patron[] membership = new Patron[20];

for(;;) {
System.out.println("1. Add a new book to the shelf");
System.out.println("2. Add a new patron");
System.out.println("3. Check out a book");
System.out.println("4. Return a book");
System.out.println("5. Pay fines");
System.out.println("6. Start a new day");
System.out.println("7. Quit");
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Library example

int query = DocsIO.readint("Your choice--> ");
switch(query) {
case 1: addBook(shelf); break;
case 2: addPatron(membership); break;
case 3: checkout(shelf, membership); break;
case 4: returnBook(membership); break;
case 5: payFine(membership); break;
case 6: newDay(shelf); break;
case 7: return;
default: System.out.println("Invalid choice.");
}

}
}
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Library example

static void addBook(Book[] shelf) {
Book book = new Book();
book.callNumber = 0;
while (shelf[book.callNumber] != null) {

book.callNumber++;
if (book.callNumber > shelf.length) {

System.out.println("Shelf full.");
return;

}
}
shelf[book.callNumber] = book;
book.title = DocsIO.readString("Title? ");
book.author = DocsIO.readString("Author? ");
book.pages = DocsIO.readint("Number of pages? ");

}
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Library example

static void addPatron(Patron[] membership) {
Patron patron = new Patron();
patron.id = 0;
while (membership[patron.id] != null) {

patron.id++;
if (patron.id > membership.length) {

System.out.println("Membership rolls full.");
return;

}
}
membership[patron.id] = patron;
patron.name = DocsIO.readString("Name?" );
int numBooks =

DocsIO.readint("How many books may this patron check out at once? ");
patron.checkedOut = new Book[numBooks];

}
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Library example

static void checkout(Book[] shelf, Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
int checkoutNumber = 0;
while (membership[patronId].checkedOut[checkoutNumber] != null) {

checkoutNumber++;
if (checkoutNumber > membership[patronId].checkedOut.length) {

System.out.println(membership[patronId].name +
" cannot check out any more books.");

return;
}

}
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Library example

static void checkout(Book[] shelf, Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
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return;
}

}
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Library example

int callNum = DocsIO.readint("Book call number? ");
if (callNum < 0 || callNum > shelf.length || shelf[callNum] == null) {

System.out.println("Book nonexistant");
return;

}
if (shelf[callNum].user != null) {

System.out.println("Book already checked out.");
return;

}
shelf[callNum].daysTillDue =

DocsIO.readint("How many days until due? ");
shelf[callNum].user = membership[patronId];
membership[patronId].checkedOut[checkoutNumber] =

shelf[callNum];
}
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Library example
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Library example

int callNum = DocsIO.readint("Book call number? ");
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System.out.println("Book already checked out.");
return;

}
shelf[callNum].daysTillDue =

DocsIO.readint("How many days until due? ");
shelf[callNum].user = membership[patronId];
membership[patronId].checkedOut[checkoutNumber] =

shelf[callNum];
}

CS 241 47



Library example

static void returnBook(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
int callNum = DocsIO.readint("Book call number? ");

}
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Library example

int checkoutNumber = -1;
for (int i = 0; i < membership[patronId].checkedOut.length; i++)

if (membership[patronId].checkedOut[i] != null &&
membership[patronId].checkedOut[i].callNumber == callNum) {
checkoutNumber = i;
break;

}
if (checkoutNumber == -1) {

System.out.println("No such book checked out.");
return;

}
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Library example

if (membership[patronId].checkedOut[checkoutNumber].daysTillDue < 0)
membership[patronId].fines +=

50 * (0 -
membership[patronId].checkedOut[checkoutNumber].daysTillDue);

membership[patronId].checkedOut[checkoutNumber].user = null;
membership[patronId].checkedOut[checkoutNumber] = null;

}
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Library example

static void payFine(Patron[] membership) {
int patronId = DocsIO.readint("Patron id? ");
if (patronId < 0 || patronId > membership.length ||

membership[patronId] == null) {
System.out.println("Patron nonexistant");
return;

}
System.out.println(membership[patronId].name + " owes "

+ membership[patronId].fines + " cents");
int payment = DocsIO.readint("Amount paid? ");
membership[patronId].fines -= payment;

}
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Library example

static void newDay(Book[] shelf) {
for (int i = 0; i < shelf.length; i++)

if (shelf[i] != null && shelf[i].user != null)
shelf[i].daysTillDue -= 1;

}
}
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