
CS 241 — Introduction to Problem Solving and Programming

Object-Oriented Programming

Second look at classes

Mar 14, 2005

CS 241 1

Types, expressions, statements

A type is a categorization of data (int, String, char[] . . .).

A variable is a container for storing data; since it must be appropriate for the data
being stored, it has a type.

An expression is a construct in the language which has a value; it evaluates to
something; therefore, it also has a type.

A statement is a construct in the language which is executed and may have some
side effects (printing to the screen, setting a variable) but does not produce a value.

You can turn an expression into a statement by appending a semi-colon.

CS 241 2

Types, expressions, statements

Is it an expression (and what type?) or a statement?

time.am = (DocsIO.readint("0 = AM, 1 = PM") == 0);

CS 241 3

Types, expressions, statements

Is it an expression (and what type?) or a statement?

time.am = (DocsIO.readint("0 = AM, 1 = PM") == 0);

CS 241 4

Types, expressions, statements

Is it an expression (and what type?) or a statement?

time.am = (DocsIO.readint("0 = AM, 1 = PM") == 0);

CS 241 5

Types, expressions, statements

Is it an expression (and what type?) or a statement?

time.am = (DocsIO.readint("0 = AM, 1 = PM") == 0);

CS 241 6

Types, expressions, statements

Is it an expression (and what type?) or a statement?

time.am = (DocsIO.readint("0 = AM, 1 = PM") == 0);

CS 241 7

Types, expressions, statements

Is it an expression (and what type?) or a statement?

time.am = (DocsIO.readint("0 = AM, 1 = PM") == 0);

CS 241 8

Methods

A method is

• A broken-off piece of the algorithm

• A packaged/encapsulated piece of functionality

• A module that can be reused like interchangeable parts

• A machine with slots going in and a slot coming out

CS 241 9

Methods

Some examples. . .

• static double convert(double temp)

• static int gcd(int a, int b)

• static int rollDice(int numDice, int numRolls, int monitorNumber)

CS 241 10

Methods

Methods are like variables that calculate a value rather than retrieve one from
storage:

int gcd;

...

static int gcd(int a, int b)

A method call, like the use of a variable, is an expression and so it has a type.

CS 241 11

Methods

We have thought of methods as machines. You can feed things into the machine
(the parameters), and the machines will produce something (what is returned).

int

static String homemadeSubstring(String str, int start, int end){

}

String toReturn = "";
for (int i = start; i < end; i++)

toReturn += str.charAt(i);
return toReturn;

char

String
int

CS 241 12

Methods

But sometimes we’ve used methods without seeing how they work—like machines
with a cover on them (ie, black boxes).

s

char

String
int int

str.substring(int begin, int end)

CS 241 13

Reference/composite types

Recently we’ve seen new types:

int[] intArray = new array[50];

class Point {
double xCoord, yCoord;
String label;

}

Point point = new Point();
point.xCoord = 0;
point.yCoord = 0;
point.label = "origin";

These are composite types because they are composed for several parts. They are reference types

because their variables and expressions refer to objects in memory.

CS 241 14

Classes

Some examples. . .

class Time {
int year;
String month;
int date;
boolean am;
int hour;
int minute;

}

class Book {
String title;
String author;
int pages;
int callNumber;
Patron user;
int daysTillDue;

}

CS 241 15

Classes

Classes package or encapsulate data.

. . . but, in order to use them, we need direct access to the instance variables—no
black-box use.

Moreover, some things we want to model seem a little like a set of data, a little
like a set of functionality (do we use a method or a class?).

Example: Watch class

CS 241 16

Classes

Goal: Package data and functionality together.

Now think of an object as a set of data and operations on that data.

CS 241 17

Classes

class A {
int data;
void incrementData() {

data++;
}
int getDouble() {

return data * 2;
}

}

A a = new A();
a.data = 5;
a.incrementData();
a.incrementData();
System.out.println(a.getDouble());

CS 241 18

Classes

class A {
int data;
void incrementData() {

data++;
}
int getDouble() {

return data * 2;
}

}

A class has data components and
method components.

CS 241 19

Classes

Both types of components are used
through dot notation.

A a = new A();
a.data = 5;
a.incrementData();
a.incrementData();
System.out.println(a.getDouble());

CS 241 20

Classes

class A {
int data;
void incrementData() {

data++;
}
int getDouble() {

return data * 2;
}

}

The data components can be used
in the body of the method compo-
nents. They refer to the data for that
instance.

Thus they are called instance vari-
ables.

Distinguish them from local variables,
local to a specific block.

CS 241 21

Polynomial example

Specification:

Write a class that models a polynomial. The class should support

• Printing the polynomial as a string
• Evaluate the polynomial (as a function) for a value of x
• Compute the derivative (another polynomial)
• Compute the definite integral for given lower and upper bounds.

CS 241 22

Polynomial example

public class PolynomialDriver {
public static void main(String[] args) {

Polynomial test = new Polynomial();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

CS 241 23

Polynomial example

public class PolynomialDriver {
public static void main(String[] args) {

Polynomial test = new Polynomial();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

Create a new polynomial.

CS 241 24

Polynomial example

public class PolynomialDriver {
public static void main(String[] args) {

Polynomial test = new Polynomial();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

Display it.

CS 241 25

Polynomial example

public class PolynomialDriver {
public static void main(String[] args) {

Polynomial test = new Polynomial();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

Find the derivative.

CS 241 26

Polynomial example

public class PolynomialDriver {
public static void main(String[] args) {

Polynomial test = new Polynomial();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

Evaluate it at a certain point.

CS 241 27

Polynomial example

public class PolynomialDriver {
public static void main(String[] args) {

Polynomial test = new Polynomial();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

Find a definite integral

CS 241 28

Polynomial example

public class Polynomial {

/**
* The coefficients of this polynomial, stored as an array of doubles.
* The index into the array is the same as the degree of the
* term for which that position is the coefficient. For example,
* the constant term is coefficients[0], and the coefficient for
* the 3rd-degree term is coefficients[3]. Hence the degree of
* the polynomial is inferred from the length of the array.
*/

double[] coefficients;

Instance variables

CS 241 29

Polynomial example

/**
* Constructor based on a given set of coefficients.
* @param coefficients The array holding the values to become this
* polynomial’s coefficients
*/

Polynomial(double[] coefficients) {
this.coefficients = coefficients;

}

A constructor is a special method for initializing the instance of a class. Its name
is the same as the class; it has no return type (not even void).

CS 241 30

Polynomial example

/**
* Constructor based on a given set of coefficients.
* @param coefficients The array holding the values to become this
* polynomial’s coefficients
*/

Polynomial(double[] coefficients) {
this.coefficients = coefficients;

}

It is called when you instantiate the class—that’s why we have those parentheses
after the class name when we instantiate.

CS 241 31

Polynomial example

/**
* Constructor based on a given set of coefficients.
* @param coefficients The array holding the values to become this
* polynomial’s coefficients
*/

Polynomial(double[] coefficients) {
this.coefficients = coefficients;

}

Constructors can have parameters.

CS 241 32

Polynomial example

/**
* Constructor based on a given set of coefficients.
* @param coefficients The array holding the values to become this
* polynomial’s coefficients
*/

Polynomial(double[] coefficients) {
this.coefficients = coefficients;

}

Constructors (or any other methods) can have parameters with the same identifier
as an instance variable. In this case the parameter shadows the instance variable.

CS 241 33

Polynomial example

/**
* Constructor based on a given set of coefficients.
* @param coefficients The array holding the values to become this
* polynomial’s coefficients
*/

Polynomial(double[] coefficients) {
this.coefficients = coefficients;

}

All classes have a default instance variable called this. It is a reference to itself.

CS 241 34

this

A class can use this to pass a reference to itself to a method or return it from a
method.

void printGraph() {

Grapher grapher = new Grapher();
...
grapher.drawGraph(this);

}

CS 241 35

Polynomial example

/**
* Constructor based on a given set of coefficients.
* @param coefficients The array holding the values to become this
* polynomial’s coefficients
*/

Polynomial(double[] coefficients) {
this.coefficients = coefficients;

}

this can also be used to refer to shadowed instance variables.

CS 241 36

Polynomial example

/**
* Constructor without a parameter on which to base the polynomial.
* Get data from the user instead.
*/

Polynomial() {
int degree = DocsIO.readint("What is the degree of this polynomial? ");
coefficients = new double[degree + 1];
for (int i = 0; i < coefficients.length; i++)

coefficients[i] =
DocsIO.readdouble("What is the coefficient of the term of degree "

+ i + "?");
}

Constructors can be overloaded.

CS 241 37

Constructors

How did we instantiate classes before we knew how to write constructors?

If you do not write a constructor for a class, Java provides a default constructor
which has no parameters and initializes all references to null, all ints to 0, all
booleans to false. . .

If you write any constructor, the default constructor will not be produced.

CS 241 38

Polynomial example

/**
* Make a string representation of the polynomial consistent with how we
* normally write polynomials.
* @return This polynomial as a string.
*/

String asString() {
String toReturn = "";
for (int i = coefficients.length - 1; i > 0; i--)

toReturn += coefficients[i] + " x-" + i + " + ";
toReturn += coefficients[0];
return toReturn;

}

CS 241 39

Polynomial example

/**
* Make a string representation of the polynomial consistent with how we
* normally write polynomials.
* @return This polynomial as a string.
*/

String asString() {
String toReturn = "";
for (int i = coefficients.length - 1; i > 0; i--)

toReturn += coefficients[i] + " x-" + i + " + ";
toReturn += coefficients[0];
return toReturn;

}

Local variable.

CS 241 40

Polynomial example

/**
* Make a string representation of the polynomial consistent with how we
* normally write polynomials.
* @return This polynomial as a string.
*/

String asString() {
String toReturn = "";
for (int i = coefficients.length - 1; i > 0; i--)

toReturn += coefficients[i] + " x-" + i + " + ";
toReturn += coefficients[0];
return toReturn;

}

Instance variable

CS 241 41

Polynomial example

/**
* Evaluate the function of this polynomial for a give value of x.
* @param x The value at which to evaluate the polynomial.
* @return The value of this polynomial at x
*/

double evaluate(double x) {
double toReturn = 0; // To hold our result as we accumulate
double currentPower = 1; // The power of x at the current degree
for (int i = 0; i < coefficients.length; i++) {

toReturn += coefficients[i] * currentPower;
currentPower *= x;

}
return toReturn;

}

CS 241 42

Polynomial example

/**
* Find the derivative of this polynomial.
* @return A new polynomial, the derivative of this one
*/

Polynomial derivative() {
// The array to hold the coefficients for the new polynomial
double[] newCoefficients = new double[coefficients.length - 1];
for (int i = 1; i < coefficients.length; i++) {

newCoefficients[i - 1] = coefficients[i] * i;
}
return new Polynomial(newCoefficients);

}

CS 241 43

Polynomial example

/**
* Find the derivative of this polynomial.
* @return A new polynomial, the derivative of this one
*/

Polynomial derivative() {
// The array to hold the coefficients for the new polynomial
double[] newCoefficients = new double[coefficients.length - 1];
for (int i = 1; i < coefficients.length; i++) {

newCoefficients[i - 1] = coefficients[i] * i;
}
return new Polynomial(newCoefficients);

}

Local variable

CS 241 44

Polynomial example

/**
* Find the derivative of this polynomial.
* @return A new polynomial, the derivative of this one
*/

Polynomial derivative() {
// The array to hold the coefficients for the new polynomial
double[] newCoefficients = new double[coefficients.length - 1];
for (int i = 1; i < coefficients.length; i++) {

newCoefficients[i - 1] = coefficients[i] * i;
}
return new Polynomial(newCoefficients);

}

Instance variable

CS 241 45

Polynomial example

/**
* Find the derivative of this polynomial.
* @return A new polynomial, the derivative of this one
*/

Polynomial derivative() {
// The array to hold the coefficients for the new polynomial
double[] newCoefficients = new double[coefficients.length - 1];
for (int i = 1; i < coefficients.length; i++) {

newCoefficients[i - 1] = coefficients[i] * i;
}
return new Polynomial(newCoefficients);

}

Constructor call

CS 241 46

Polynomial example

/**
* Calculate the definite integral of this polynomial, given upper and lower
* @param lower The x value at which the region begins; the lower bound
* @param upper The x value at which the region ends; the upper bound
* @return The value of the definite integral
*/

double integrate(double lower, double upper) {
// The array to hold the coefficients for the anti-derivative
double[] newCoefficients = new double[coefficients.length + 1];
for (int i = 1; i < newCoefficients.length; i++)

newCoefficients[i] = (1 / (double) i) * coefficients[i - 1];
// The anti-derivative of this polynomial
Polynomial integral = new Polynomial(newCoefficients);
return integral.evaluate(upper) - integral.evaluate(lower);

}
}

CS 241 47

Summary

Be familiar with the following concepts.

• Type

• Variable

• Expression

• Statement

• Method

• Composite or reference types

• Members

• Data members

• Method members

• Instance variables

• Local variables

• Constructor

• Default constructor

• Shadowing / shadowed variables

• this

CS 241 48

