
CS 241 — Introduction to Problem Solving and Programming

Fundamentals of Programming

Flow of control

Jan 21, 2005

CS 241 1

Overview

• The boolean type

• Branch statements

• Boolean operators

CS 241 2

Boolean

We’ve mentioned another primitive type besides int, double, and char: the type
boolean.

• Named after logician/mathematician George Boole

• Used to represent values in boolean logic

• Has two values: true and false.

CS 241 3

Boolean type

We can declare and use variables, use the literals, and print them out.

boolean x = true;
boolean y = false;
System.out.println("x: " + x + ", y: " + y);

...

x: true, y: false

CS 241 4

Boolean operators

We can produce values using boolean-valued operators.

int first = DocsIO.readint("Please enter first number-->");
int second = DocsIO.readint("Please enter second number-->";

boolean lt = first < second;
boolean lteq = first <= second;
boolean eq = first == second;
boolean gteq = first >= second;
boolean gt = first > second;

System.out.println(lt + " / " + lteq + " / " + eq
+ " / " + gteq + " / " + gt);

...

Please enter first number-->5;
Please enter second number-->7
true / true / false / false / false

CS 241 5

Boolean operators

Here are the boolean-valued operators that operate on ints, doubles, and related
types.

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal to

== Equal to

Note the difference between = (assignment) and == (comparison).

CS 241 6

Boolean operators

What if we mixed up assignment and comparison?

boolean firstEqualsSecond = first = second;
boolean firstEqualsTwelve = 12 = first;

...

BoolBasic.java:17: incompatible types
found : int
required: boolean

boolean firstEqualsSecond = first = second;
^

BoolBasic.java:18: unexpected type
required: variable
found : value

boolean firstEqualsTwelve = 12 = first;
^

2 errors

CS 241 7

Boolean operators

For characters, comparison is in lexicographical order.

char first = ’A’;
char second = ’A’;
char third = ’Z’;
char fourth = ’z’;

System.out.println((first == second) + " / " + (first == third));
System.out.println((first < second) + " / " +

(second < third) + " / " +
(third < fourth));

...

true / false
false / true / true

CS 241 8

Use of boolean

Booleans are used for making decisions.

Suppose we wanted to print a remainer only if it is not zero.

int first, second, quotient, remainder;
first = DocsIO.readint("Enter dividend: ");
second = DocsIO.readint("Enter divisor: ");
quotient = first / second;
remainder = first % second;
String result = first + " / " + second + " = " + quotient;
if (remainder != 0)

result += " R" + remainder;
System.out.println(result);

CS 241 9

Use of boolean

Enter dividend: 23
Enter divisor: 4
23 / 4 = 5 R3

...

Enter dividend: 24
Enter divisor: 4
24 / 4 = 6

CS 241 10

Branch statement

Such a decision-making expression is a branch statement or an if statement.

This aspect of the program is flow of control.

Branch Statement: if (BooleanExpression)
Statement

beginning of program
↙ |

Conditional part |
↘ ↓

end of program

CS 241 11

Block statements

What if we wanted more than one thing to happen under a condition?

int first, second, quotient;
first = 23;
second = 4;
quotient = first / second;
System.out.println(first + " / " + second + " = " + quotient);
if (first != second * quotient) {

int remainder = first % second;
System.out.println("The remainder is " + remainder);

}

CS 241 12

Block statements

Curly braces set off a block statement.

int first, second, quotient;
first = 23;
second = 4;
quotient = first / second;
System.out.println(first + " / " + second + " = " + quotient);
if (first != second * quotient) {

int remainder = first % second;
System.out.println("The remainder is " + remainder);

}

CS 241 13

Block statements

Variables declared in a block are live only in the block.

int first, second, quotient;
first = 23;
second = 4;
quotient = first / second;
System.out.println(first + " / " + second + " = " + quotient);
if (first != second * quotient) {

int remainder = first % second;
System.out.println("The remainder is " + remainder);

}

This is called the variable’s scope.

CS 241 14

Variable scope

System.out.println(first + " / " + second + " = " + quotient);
if (first != second * quotient) {

int remainder = first % second;
System.out.println("The remainder is " + remainder);

}
System.out.println(quotient + " R " + remainder);

...

Quotient.java:14: cannot resolve symbol
symbol : variable remainder
location: class Quotient

System.out.println(quotient + " R " + remainder);
^

1 error

CS 241 15

Block statement

Block Statement: {
Statement
Statement
Statement
Statement . . .

}

Zero or more statements enclosed in curly braces.

These will prove fundamental to many constructs we’ll see later. . .

CS 241 16

If / else

What if there is more than one alternate action?

Use else.

int first, second, quotient, remainder;
first = 23;
second = 4;
quotient = first / second;
remainder = first % second;
if (first != second * quotient)

System.out.println(first + " / " + second + " = "
+ quotient + " R " + remainder);

else
System.out.println(first + " / " + second + " = " + quotient);

CS 241 17

If /else

The else branch is an optional part of a branch statement.

Branch Statement: if (BooleanExpression)
Statement

else
Statement beginning of program

↙ ↘
then part else part

↘ ↙
end of program

CS 241 18

If / else

int guess = DocsIO.readint("Please guess a number, 1 to 99-->");
if (guess == 16)

System.out.println("That is correct!");
else

System.out.println("I’m sorry, " + guess + " is wrong.");

...

Please guess a number, 1 to 99-->53
I’m sorry, 53 is wrong.

...

Please guess a number, 1 to 99-->16
That is correct!

CS 241 19

If / else

What if there are several alternatives?

We could always nest branch statements in block statements.

if (guess == 16)
System.out.println("That is correct!");

else {
if (guess < 1)

System.out.println("That’s not even in the range.");
else {

if (guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

}
}

CS 241 20

If / else

This block is actually a single branch statement.

We don’t need the curly braces.

if (guess == 16)
System.out.println("That is correct!");

else {
if (guess < 1)

System.out.println("That’s not even in the range.");
else {

if (guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

}
}

CS 241 21

If / else

This block is also a single statement.

We’ll get rid of the braces here, too.

if (guess == 16)
System.out.println("That is correct!");

else {
if (guess < 1)

System.out.println("That’s not even in the range.");
else

if (guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

}
}

CS 241 22

If / else

Here’s how the ifs and elses match up.

Keep up this indentation and the program will be unreadable.

if (guess == 16)
System.out.println("That is correct!");

else
if (guess < 1)

System.out.println("That’s not even in the range.");
else

if (guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

}
}

CS 241 23

If / else

Here’s the standard way of writing a multibranch if-else statement.

Note that else if becomes essentially a single thought.

if (guess == 16)
System.out.println("That is correct!");

else if (guess < 1)
System.out.println("That’s not even in the range.");

else if (guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

CS 241 24

If / else

Be careful. . .

int number = 15;

if (number > 1)
if (number > 20)

System.out.println("Number too big");
else

System.out.println("Number too small");

CS 241 25

If / else

The compiler ignores whitespace and matches else with the closest if.

int number = 15;

if (number > 1)
if (number > 20)

System.out.println("Number too big");
else

System.out.println("Number too small");

...

Number too small

CS 241 26

If / else

These two conditions have the same result.

Shouldn’t there be a way to combine them?

if (guess == 16)
System.out.println("That is correct!");

else if (guess < 1)
System.out.println("That’s not even in the range.");

else if (guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

CS 241 27

Combining conditions

Conceptually, we want to combine two conditions.

If the number is less than one or greater than 100...

We would like to produce another boolean value from the ones we have.

CS 241 28

Boolean operators

Use boolean operators.

int guess = 53;
boolean belowFloor = guess < 1;
boolean aboveFloor = guess >= 1;
boolean belowCeil = guess <= 99;
boolean aboveCeil = guess > 99;
boolean inRange = aboveFloor && aboveCeil; // and
boolean outOfRange = belowFloor || aboveCeil; // or

System.out.println(belowFloor + " / " + aboveFloor + " / " +
belowCeil + " / " + aboveCeil + " / " +
inRange + " / " + outOfRange);

...

false / true / true / false / false / false

CS 241 29

Boolean operators

The three boolean operators are and (&&), or (||), and not (!). They can be defined
by truth tables.

x y x && y
true true true
true false false
false true false
false false false

x y x || y
true true true
true false true
false true true
false false false

x !x
true false
false true

CS 241 30

Boolean operators

Our old program, now refined.

if (guess == 16)
System.out.println("That is correct!");

else if (guess < 1 || guess > 99)
System.out.println("That’s not even in the range.");

else
System.out.println("I’m sorry, " + guess + " is wrong.");

CS 241 31

Boolean operators

Highest precedence ++, --, unary -, type casting, and !
*, /, and %
+ and -
<, >, <=, and <=
== and !=
&&
||

Lowest precedence = and friends

CS 241 32

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y);
System.out.println(! x || y);
System.out.println(! x || z);
System.out.println(x && !y);
System.out.println(x && y || x && !z);
System.out.println(x || y && x || !z);
System.out.println((x || y) && !(x && y));

CS 241 33

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y);
System.out.println(! x || z);
System.out.println(x && !y);
System.out.println(x && y || x && !z);
System.out.println(x || y && x || !z);
System.out.println((x || y) && !(x && y));

CS 241 34

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y); false
System.out.println(! x || z);
System.out.println(x && !y);
System.out.println(x && y || x && !z);
System.out.println(x || y && x || !z);
System.out.println((x || y) && !(x && y));

CS 241 35

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y); false
System.out.println(! x || z); true
System.out.println(x && !y);
System.out.println(x && y || x && !z);
System.out.println(x || y && x || !z);
System.out.println((x || y) && !(x && y));

CS 241 36

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y); false
System.out.println(! x || z); true
System.out.println(x && !y); true
System.out.println(x && y || x && !z);
System.out.println(x || y && x || !z);
System.out.println((x || y) && !(x && y));

CS 241 37

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y); false
System.out.println(! x || z); true
System.out.println(x && !y); true
System.out.println(x && y || x && !z); false
System.out.println(x || y && x || !z);
System.out.println((x || y) && !(x && y));

CS 241 38

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y); false
System.out.println(! x || z); true
System.out.println(x && !y); true
System.out.println(x && y || x && !z); false
System.out.println(x || y && x || !z); true
System.out.println((x || y) && !(x && y));

CS 241 39

Boolean operators

Can you predict these values?

boolean x = true,
y = false,
z = true;

System.out.println(! x && y); false
System.out.println(! x || y); false
System.out.println(! x || z); true
System.out.println(x && !y); true
System.out.println(x && y || x && !z); false
System.out.println(x || y && x || !z); true
System.out.println((x || y) && !(x && y)); true

CS 241 40

Short-circuit evaluation

If the first operand to && is false and the first operand to || is true, Java will not
bother evaluating the second operand.

This is called short-circuit evaluation. You can use it to protect against errors.

if (possible != 0 && points / possible > 60)
System.out.println("Average above passing");

CS 241 41

Example

int grade = DocsIO.readint("Enter your numeric grade-->");

System.out.println("Your letter grade:");
if (grade < 60)

System.out.println("F");
else if (grade < 70)

System.out.println("D");
else if (grade < 80)

System.out.println("C");
else if (grade < 90)

System.out.println("B");
else if (grade <= 100)

System.out.println("A");
else

System.out.println("A+");

CS 241 42

Example

double radius = DocsIO.readdouble("Please enter the radius-->");

System.out.println("Please select from the following:");
System.out.println("\t1. Diameter");
System.out.println("\t2. Circumference");
System.out.println("\t3. Area");

int choice = DocsIO.readint("Your choice-->");

if (choice < 1 || choice > 3)
System.out.println("That was not a valid option.");

else {
double result;
if (choice == 1)

result = radius * 2;
else if (choice == 2)

result = (radius * 2) * 3.14159;
else

result = radius * radius * 3.14159;
System.out.println("Result: " + result);

}

CS 241 43

Comparing Strings

Comparing Strings is tricky.

String x = "aloha";
String y = x;
String z = "alo";

z += "ha";
System.out.println(x + " " + y + " " + (x==y));
System.out.println(x + " " + z + " " + (x==z));

CS 241 44

Comparing Strings

What’s going on?

String x = "aloha";
String y = x;
String z = "alo";

z += "ha";
System.out.println(x + " " + y + " " + (x==y));
System.out.println(x + " " + z + " " + (x==z));

...

aloha aloha true
aloha aloha false

CS 241 45

Comparing Strings

On Strings, == reports whether its operands are the same object (stored in the
same part of memory), not whether they contain the same sequence of characters.

It returns true if its operands are the exact same String, not if they are two
Strings that happen to be the same.

CS 241 46

Comparing Strings

Use the method string.equals(string).

String x = "aloha";
String y = x;
String z = "alo";

z += "ha";
System.out.println(x + " " + y + " " + (x==y));
System.out.println(x + " " + z + " " + (x==z));
System.out.println(x + " " + z + " " + x.equals(z));

...

aloha aloha true
aloha aloha false
aloha aloha true

CS 241 47

Warnings

• Don’t mix up = and ==.

• Watch out for missing {.

• Declare variables in the right place.

• Be careful about initializing variables in branches.

• Make sure your ifs and elses match as you expect.

• Remember && has higher precedence than || (or just use parentheses).

• Use .equals() to compare Strings.

CS 241 48

Summary

Be able to identify the following concepts:

• boolean type

• Lexicographical order

• Branch statement

• Flow of control

• Block statement

• Scope

• Multibranch

• Short-circuit evaluation

CS 241 49

