
CS 241 — Introduction to Problem Solving and Programming

Object-Oriented Programming

Interfaces

Mar 21, 2005

CS 241 1

Static

So what is static?

If a member of a class is static, then it belongs to a class, rather than an instance;
all instances of the class share the same one.

public class C {

int value; // Each instance has its own
static int accumulator // Single variable shared by all instances

}

CS 241 2

Static

A static method cannot refer to the class’s instance variables (including this) or
invoke a non-static method (except using dot notation on an instance of the class).

public class D {

int x;
static int y;

int xTimes5() { return x * 5; }

static int crazyMethod() {
int z = x - 10; // error
return z + y / xTimes5(); // error

}
}

CS 241 3

Static

Call static methods from outside the class by using dot notation on the class name
(not on an instance).

public class C
static int mult5(int x) return x * 5;

...

int y = C.mult5(12);

CS 241 4

Static

Some statics we’ve seen. . .

• Any main method.

• System.out.println(), where out is a static field of the System class (it is
an instance of class PrintStream which has a method println()).

• DocsIO.readint() and friends, where readint() is a static method of the
class DocsIO.

CS 241 5

Static

Example use of static: giving every instance a uniqe id #

public class Book {

private static int currentId;
private int uniqueId;

Book() {
uniqueId = currentId++;

}

CS 241 6

Static

The Math class has these static methods:

double Math.pow(double, double) int Math.abs(double)
int Math.round(double) double Math.sqrt(double)
int Math.floor(double) int Math.ceil(double)

See pg 280.

CS 241 7

Back to Friday

Recall the set of measur(e)ments example. . .

Classes have class invariants specifying what conditions should be preserved by all
methods of the class (except the constructors, which set those conditions).

On the method level, we have pre- and post-conditions.

CS 241 8

Postcondition

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {
// To hold the new array
double[] newMeasurements = new double[measurements.length + 1];
for (int i = 0; i < measurements.length; i++)

newMeasurements[i] = measurements[i];
newMeasurements[measurements.length] = measurement;
measurements = newMeasurements;

}

CS 241 9

Correction

Mistake in the handout:

public void remove(int position) {
// To hold the new array
double[] newMeasurements = new double[measurements.length - 1];
for (int i = 0; i < position; i++)

newMeasurements[i] = measurements[i];
for (int i = position + 1; i < measurements.length; i++)

newMeasurements[i - 1] = measurements[i];
measurements = newMeasurements;
recalculateStats();

}

CS 241 10

Measurements

We have also had several decisions to make about the implementation.

public Measurements1(double[] initials) {
measurements = new double[initials.length];
for (int i = 0; i < initials.length; i++)

measurements[i] = initials[i];
}

public Measurements2(double[] initials) {
measurements = initials;
recalculateStats();

}

CS 241 11

Measurements

Keeping values like max, min, and average instead of recalculating added to our
class invariant:

public class Measurements2 implements Measurements {
double[] measurements;
double max;
double min;
double average;

This also adds to our vulnerability. . .

CS 241 12

Sermon on Encapsulation

We’ve seen the use of modularity/encapsulation for reusability

It is also important for correctness.

To determine that our variables are used correctly, it helps to isolate where the
variables are used.

CS 241 13

Accessibility

Members of a class can be given an accessibility level: public or private.

• An instance variable or method that is designated public can be accessed (read
or written to; for instance variables) or invoked (for methods) by code in another
class.

• An instance variable or method that is designated private can be be accessed
(for instance variables) or invoked (for methods) only by code in the same class.

CS 241 14

Accessibility

public class Measurements2 implements Measurements {
private double[] measurements;
private double max;
private double min;
private double average;

We now can guarntee the instance variables cannot be read from or written to.
Any attempt would generate a compiler error:

MeasurementsDriver.java:4: average has private access in Measurements2
mm.average = 5;

CS 241 15

Accessibility

Why is there a public access modifier? Aren’t members public if they are not
declared private?

No, there is a subtle difference. The default access modifier is package-scoped. For
our purposes, we won’t notice a difference, but it’s good style to make everything
that can be used elsewhere public.

It’s good progamming practice to make all instance variables private.

CS 241 16

Getter methods

Notice all these methods in Measurements2 do is read the instance variables.

/**
* Compute the average measurement.
* Getter method for instance variable average.
* @return the mean measurement
*/

public double average() { return average; }

public double max() { return max; }

public double min() { return min; }

Such methods are called getter methods or accessor methods.

CS 241 17

Setter methods

I want client code to be able change the value of an instance variable. How can I
do that without making it public?

Use setter methods (or mutator methods).

public class X {
int y;
void setY(int y) {

this.y = y;
}

}

CS 241 18

Getters and Setters

I’ve defined a getter method and a setter method for an instance variable. Doesn’t
that in practice make it public? Why should I still declare it private?

CS 241 19

Getters and Setters

I’ve defined a getter method and a setter method for an instance variable. Doesn’t
that in practice make it public? Why should I still declare it private?

• Debugging

• Preparing for changes you might make later (client code should depend on the
methods of the class, not instance variables.

More on reason #2 later . . .

CS 241 20

Accessibility

Methods, too, can be private, and sometimes should be.

private void recalculateStats() {
double sum = max = min = measurements[0];
for (int i = 1; i < measurements.length; i++) {

sum += measurements[i];
if (measurements[i] < min)

min = measurements[i];
if (measurements[i] > max)

max = measurements[i];
}
average = sum / measurements.length;

}

CS 241 21

Encapsulation sermon, part II

Class invariants and private instance variables help us make guarantees about the
correctness of a module or component (classes, methods, . . .).

We can reason about the correctness of interaction between models by thinking in
terms of contracts.

A method signature and documentation describe the contract.

CS 241 22

Programming by contract

A general description of the transaction.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {

CS 241 23

Programming by contract

The client’s side of the agreement.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {

CS 241 24

Programming by contract

The method’s side of the agreement.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {

CS 241 25

Programming by contract

Not part of the contract.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {

CS 241 26

Two versions

What do Measurements1 and Measurements2 have (completely) in common?

CS 241 27

Two versions

What do Measurements1 and Measurements2 have (completely) in common?

Not instance variables. . .

Not algorithms. . .

Not even private methods. . .

CS 241 28

Two versions

Measurements1 and Measurements2 share a common set of public methods and
contract with client code.

We call this the interface of these classes.

CS 241 29

Interfaces

Java has a construct for declaring an interface for classes to implement.

public interface Measurements {
public int size();
public void add(double measurement);
public void remove(int position);
public double average();
public double max();
public double min();

}

CS 241 30

Interfaces

Document the contract, not the algorithm.

public interface Measurements {

/**
* Compute the size of this set of measurements
* @return the number of measurements contained
*/

public int size();

CS 241 31

Interfaces

Classes then implement the interface.

public class Measurements1 implements Measurements {

CS 241 32

Interface

Then clients can use the classes interchangeably.

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

CS 241 33

