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Static

So what is static?

If a member of a class is static, then it belongs to a class, rather than an instance;
all instances of the class share the same one.

public class C {

int value; // Each instance has its own
static int accumulator // Single variable shared by all instances

}
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Static

A static method cannot refer to the class’s instance variables (including this) or
invoke a non-static method (except using dot notation on an instance of the class).

public class D {

int x;
static int y;

int xTimes5() { return x * 5; }

static int crazyMethod() {
int z = x - 10; // error
return z + y / xTimes5(); // error

}
}
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Static

Call static methods from outside the class by using dot notation on the class name
(not on an instance).

public class C
static int mult5(int x) return x * 5;

...

int y = C.mult5(12);
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Static

Some statics we’ve seen. . .

• Any main method.

• System.out.println(), where out is a static field of the System class (it is
an instance of class PrintStream which has a method println()).

• DocsIO.readint() and friends, where readint() is a static method of the
class DocsIO.
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Static

Example use of static: giving every instance a uniqe id #

public class Book {

private static int currentId;
private int uniqueId;

Book() {
uniqueId = currentId++;

}
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Static

The Math class has these static methods:

double Math.pow(double, double) int Math.abs(double)
int Math.round(double) double Math.sqrt(double)
int Math.floor(double) int Math.ceil(double)

See pg 280.
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Back to Friday

Recall the set of measur(e)ments example. . .

Classes have class invariants specifying what conditions should be preserved by all
methods of the class (except the constructors, which set those conditions).

On the method level, we have pre- and post-conditions.
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Postcondition

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {
// To hold the new array
double[] newMeasurements = new double[measurements.length + 1];
for (int i = 0; i < measurements.length; i++)

newMeasurements[i] = measurements[i];
newMeasurements[measurements.length] = measurement;
measurements = newMeasurements;

}
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Correction

Mistake in the handout:

public void remove(int position) {
// To hold the new array
double[] newMeasurements = new double[measurements.length - 1];
for (int i = 0; i < position; i++)

newMeasurements[i] = measurements[i];
for (int i = position + 1; i < measurements.length; i++)

newMeasurements[i - 1] = measurements[i];
measurements = newMeasurements;
recalculateStats();

}
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Measurements

We have also had several decisions to make about the implementation.

public Measurements1(double[] initials) {
measurements = new double[initials.length];
for (int i = 0; i < initials.length; i++)

measurements[i] = initials[i];
}

public Measurements2(double[] initials) {
measurements = initials;
recalculateStats();

}
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Measurements

Keeping values like max, min, and average instead of recalculating added to our
class invariant:

public class Measurements2 implements Measurements {
double[] measurements;
double max;
double min;
double average;

This also adds to our vulnerability. . .
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Sermon on Encapsulation

We’ve seen the use of modularity/encapsulation for reusability

It is also important for correctness.

To determine that our variables are used correctly, it helps to isolate where the
variables are used.
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Accessibility

Members of a class can be given an accessibility level: public or private.

• An instance variable or method that is designated public can be accessed (read
or written to; for instance variables) or invoked (for methods) by code in another
class.

• An instance variable or method that is designated private can be be accessed
(for instance variables) or invoked (for methods) only by code in the same class.
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Accessibility

public class Measurements2 implements Measurements {
private double[] measurements;
private double max;
private double min;
private double average;

We now can guarntee the instance variables cannot be read from or written to.
Any attempt would generate a compiler error:

MeasurementsDriver.java:4: average has private access in Measurements2
mm.average = 5;
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Accessibility

Why is there a public access modifier? Aren’t members public if they are not
declared private?

No, there is a subtle difference. The default access modifier is package-scoped. For
our purposes, we won’t notice a difference, but it’s good style to make everything
that can be used elsewhere public.

It’s good progamming practice to make all instance variables private.
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Getter methods

Notice all these methods in Measurements2 do is read the instance variables.

/**
* Compute the average measurement.
* Getter method for instance variable average.
* @return the mean measurement
*/

public double average() { return average; }

public double max() { return max; }

public double min() { return min; }

Such methods are called getter methods or accessor methods.
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Setter methods

I want client code to be able change the value of an instance variable. How can I
do that without making it public?

Use setter methods (or mutator methods).

public class X {
int y;
void setY(int y) {

this.y = y;
}

}
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Getters and Setters

I’ve defined a getter method and a setter method for an instance variable. Doesn’t
that in practice make it public? Why should I still declare it private?
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Getters and Setters

I’ve defined a getter method and a setter method for an instance variable. Doesn’t
that in practice make it public? Why should I still declare it private?

• Debugging

• Preparing for changes you might make later (client code should depend on the
methods of the class, not instance variables.

More on reason #2 later . . .
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Accessibility

Methods, too, can be private, and sometimes should be.

private void recalculateStats() {
double sum = max = min = measurements[0];
for (int i = 1; i < measurements.length; i++) {

sum += measurements[i];
if (measurements[i] < min)

min = measurements[i];
if (measurements[i] > max)

max = measurements[i];
}
average = sum / measurements.length;

}
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Encapsulation sermon, part II

Class invariants and private instance variables help us make guarantees about the
correctness of a module or component (classes, methods, . . . ).

We can reason about the correctness of interaction between models by thinking in
terms of contracts.

A method signature and documentation describe the contract.
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Programming by contract

A general description of the transaction.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {
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Programming by contract

The client’s side of the agreement.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {
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Programming by contract

The method’s side of the agreement.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {
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Programming by contract

Not part of the contract.

/**
* Add a new measurement to the set.
* Create a new array of larger size; copy all the old elements into
* the new one; place also the new measurement into the new
* array; finally, set measurements to refer to the new array.
* POSTCONDITION: The array measurements has been replaced
* by one of size one greater, with the old elements and the new one
* @param measurement the measurement to add to the collection
*/

public void add(double measurement) {
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Two versions

What do Measurements1 and Measurements2 have (completely) in common?
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Two versions

What do Measurements1 and Measurements2 have (completely) in common?

Not instance variables. . .

Not algorithms. . .

Not even private methods. . .
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Two versions

Measurements1 and Measurements2 share a common set of public methods and
contract with client code.

We call this the interface of these classes.
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Interfaces

Java has a construct for declaring an interface for classes to implement.

public interface Measurements {
public int size();
public void add(double measurement);
public void remove(int position);
public double average();
public double max();
public double min();

}
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Interfaces

Document the contract, not the algorithm.

public interface Measurements {

/**
* Compute the size of this set of measurements
* @return the number of measurements contained
*/

public int size();
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Interfaces

Classes then implement the interface.

public class Measurements1 implements Measurements {
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Interface

Then clients can use the classes interchangeably.

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));
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