
CS 241 — Introduction to Problem Solving and Programming

Fundamentals of Programming

Flow of control, part II : Loop constructs

Jan 26, 2005

CS 241 1

From last time: Comparing Strings

String name = DocsIO.readString("Please enter your name--> ");
String job = DocsIO.readString("Hello, " + name + ", what is your occupation? ");

if (name.equals("Bill"))
System.out.println("What a coincidence, " + name +

"! My uncle is also named Bill and works at " + job + ".");
else if (job.equals("writing novels"))

System.out.println("I never imagined a novelist would be named " + name);
else

System.out.println(name + " is a funny name, but I respect the career of "
+ job);

equals(String) is a String method that returns a boolean, true if the Strings
contain the same sequence of characters.

CS 241 2

From last time: Comparing Strings

String name = DocsIO.readString("Please enter your name--> ");
String job = DocsIO.readString("Hello, " + name + ", what is your occupation? ");

if (name.equals("Bill"))
System.out.println("What a coincidence, " + name +

"! My uncle is also named Bill and works at " + job + ".");
else if (job.equals("writing novels"))

System.out.println("I never imagined a novelist would be named " + name);
else

System.out.println(name + " is a funny name, but I respect the career of "
+ job);

Like other DocsIO methods we’ve seen, DocsIO.readString prompts the user,
but returns a String, the entire line the user enters.

CS 241 3

From last time: Comparing Strings

String name = DocsIO.readString("Please enter your name--> ");
String job = DocsIO.readString("Hello, " + name + ", what is your occupation? ");

if (name.equals("Bill"))
System.out.println("What a coincidence, " + name +

"! My uncle is also named Bill and works at " + job + ".");
else if (job.equals("writing novels"))

System.out.println("I never imagined a novelist would be named " + name);
else

System.out.println(name + " is a funny name, but I respect the career of "
+ job);

...

Please enter your name--> Bill
Hello, Bill, what is your occupation? writing novels
What a coincidence, Bill! My uncle is also named Bill and works at writing novels.

CS 241 4

From last time: Comparing Strings

String name = DocsIO.readString("Please enter your name--> ");
String job = DocsIO.readString("Hello, " + name + ", what is your occupation? ");

if (name.equals("Bill"))
System.out.println("What a coincidence, " + name +

"! My uncle is also named Bill and works at " + job + ".");
else if (job.equals("writing novels"))

System.out.println("I never imagined a novelist would be named " + name);
else

System.out.println(name + " is a funny name, but I respect the career of "
+ job);

...

Please enter your name--> Aggripinilla
Hello, Aggripinilla, what is your occupation? writing novels
I never imagined a novelist would be named Aggripinilla

CS 241 5

From last time: Comparing Strings

String name = DocsIO.readString("Please enter your name--> ");
String job = DocsIO.readString("Hello, " + name + ", what is your occupation? ");

if (name.equals("Bill"))
System.out.println("What a coincidence, " + name +

"! My uncle is also named Bill and works at " + job + ".");
else if (job.equals("writing novels"))

System.out.println("I never imagined a novelist would be named " + name);
else

System.out.println(name + " is a funny name, but I respect the career of "
+ job);

...

Please enter your name--> Vercingetorix
Hello, Vercingetorix, what is your occupation? fighting Romans
Vercingetorix is a funny name, but I respect the career of fighting Romans

CS 241 6

From last time: Warnings about branches

• Don’t mix up = and ==.

• Watch out for missing {.

• Declare variables in the right place.

• Be careful about initializing variables in branches.

• Make sure your ifs and elses match as you expect.

• Remember && has higher precedence than || (or just use parentheses).

• Use .equals() to compare Strings.

CS 241 7

From last time: Summary

Be able to identify the following concepts:

• boolean type

• Lexicographical order

• Branch statement

• Flow of control

• Block statement

• Scope

• Multibranch

• Short-circuit evaluation

CS 241 8

Overview

• General need for a loop

• Do-While loops

• Extended example

CS 241 9

Problem

Let’s begin with a problem . . .
long division.
What is the first step?

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 10

Problem

First, we chip off a piece of the prob-
lem, something which is less than ten
times the divisor.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 11

Long division

Then we do simple, integer division.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 12

Long division

We multiply that result by the divisor.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 13

Long division

And subtract that result from the cur-
rent piece of the problem.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 14

Long division

We drop the next digit, which with
the previous result become the new
piece of the problem.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 15

Long division

Divide and multiply.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 16

Long division

Subtract.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 17

Long division

This time, in order to drop, we must
also add a decimal point and a zero.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 18

Long division

Divide, multiply, subtract, and drop.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 19

Long division

Divide, multiply, subtract.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 20

Long division

We’re finished, because the current
piece of the problem is zero, and there
are no more non-decimal places to
drop.

1 2 .2 5

8 9 8 .0 0

- 8

1 8

- 1 6

2 0

- 1 6

4 0

- 4 0

0

CS 241 21

Long division

What’s our algorithm?

• Pick off the next digit of the dividend, add to the end of the current problem
piece.

CS 241 22

Long division

What’s our algorithm?

• Pick off the next digit of the dividend, add to the end of the current problem
piece.

• (Integer) divide current piece by divisor, call it quotient.

CS 241 23

Long division

What’s our algorithm?

• Pick off the next digit of the dividend, add to the end of the current problem
piece.

• (Integer) divide current piece by divisor, call it quotient.

• Add quotient to result.

CS 241 24

Long division

What’s our algorithm?

• Pick off the next digit of the dividend, add to the end of the current problem
piece.

• (Integer) divide current piece by divisor, call it quotient.

• Add quotient to result.

• Multiply quotient by divisor, call it product.

CS 241 25

Long division

What’s our algorithm?

• Pick off the next digit of the dividend, add to the end of the current problem
piece.

• (Integer) divide current piece by divisor, call it quotient.

• Add quotient to result.

• Multiply quotient by divisor, call it product.

• Subtract current piece by product, make it the new current piece.

CS 241 26

Long division

What’s our algorithm?

• Pick off the next digit of the dividend, add to the end of the current problem
piece.

• (Integer) divide current piece by divisor, call it quotient.

• Add quotient to result.

• Multiply quotient by divisor, call it product.

• Subtract current piece by product, make it the new current piece.

• Repeat until current is zero and there are no more original digits to drop.

CS 241 27

Long division

What’s our algorithm?

• Initialize current piece to zero.

• Do

– Pick off the next digit of the dividend, add to the end of the current problem piece.

– (Integer) divide current piece by divisor, call it quotient.

– Add quotient to result.

– Multiply quotient by divisor, call it product.

– Subtract current piece by product, make it the new current piece.

until current is zero and there are no more original digits to drop.

• Display result.

CS 241 28

Loops

We have seen branches in the flow of control.

Now we want not just to split the flow, but for
the flow to go back to an earlier program point.
We want repetition.

A repetition structure in a program is called a
loop.

Program

End of

Program

Program

Beginning of

Repeated
part of

a condition
ending with

CS 241 29

Do-while loops

In Java, a loop of this kind is made with a do-while statement.

Do-while statement: do
Statement

while (BooleanExpression);

Note the semi-colon at the end.

The inside, repeated statement is called the body. The boolean expression is the
test or condition of the loop. Each trip through the loop is called an iteration.

CS 241 30

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
alohas--;

} while (alohas > 0);
}

}

Simple example.

CS 241 31

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
alohas--;

} while (alohas > 0);
}

}

Initialize a variable to stand for “number of alohas left to say.”

CS 241 32

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
alohas--;

} while (alohas > 0);
}

}

The loop.

CS 241 33

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
alohas--;

} while (alohas > 0);
}

}

Keep repeating “while there are still some alohas left” (or “until there are no alohas
left”).

CS 241 34

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
alohas--;

} while (alohas > 0);
}

}

For each iteration, print an “aloha.”

CS 241 35

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
alohas--;

} while (alohas > 0);
}

}

. . . and make sure you adjust the counting variable or counter. The condition
depends on it.

CS 241 36

Do-while loops

ar1121: {178} java GoofyDoWhile
How many times would you like me to say "Aloha"? 1
Aloha.
ar1121: {179} java GoofyDoWhile
How many times would you like me to say "Aloha"? 3
Aloha.
Aloha.
Aloha.
ar1121: {180} java GoofyDoWhile
How many times would you like me to say "Aloha"? 8
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.

CS 241 37

Do-while loops

public class GoofyDoWhile {
public static void main(String[] args) {

int alohas =
DocsIO.readint("How many times would you like me to say Aloha? ");

do {
System.out.println("Aloha.");
//alohas--;

} while (alohas > 0);
}

}

What if we left out decrementing alohas?

CS 241 38

Do-while loops

How many times would you like me to say "Aloha"? 1
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.
Aloha.

CS 241 39

Long division

Returning to our long division example. . .

• Initialize current piece to zero.

• Do

– Pick off the next digit of the dividend, add to the end of the current problem piece.

– (Integer) divide current piece by divisor, call it quotient.

– Add quotient to result.

– Multiply quotient by divisor, call it product.

– Subtract current piece by product, make it the new current piece.

until current is zero and there are no more original digits to drop.

• Display result.

CS 241 40

Long division

String dividend = DocsIO.readString("Please enter the dividend--> ");
int divisor = DocsIO.readint("Please enter the divisor--> ");

int position = 0; // The position of the current digit in dividend
int current = 0; // The current piece of the problem
String result = ""; // The quotient for the entire long division so far

do {
...

We’ll store the dividend as a String and pick off digits using substring.

CS 241 41

Long division

String dividend = DocsIO.readString("Please enter the dividend--> ");
int divisor = DocsIO.readint("Please enter the divisor--> ");

int position = 0; // The position of the current digit in dividend
int current = 0; // The current piece of the problem
String result = ""; // The quotient for the entire long division so far

do {
...

Three variables keep track of values modified by the loop. We initialize them for
starting (initial) values.

CS 241 42

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

First step: make room for the dropped value.

CS 241 43

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

If we haven’t hit the decimal point yet, take the next integer from the dividend,
and “drop” it.

CS 241 44

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

Special case: If this is the first time we’ve gotten past the end of the dividend, add
a decimal point to the remainder.

CS 241 45

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

Divide step.

CS 241 46

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

String concatenation. Add quotient (automatically cast to a String) to to our
result String.

CS 241 47

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

Multiply step.

CS 241 48

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

Update the current problem piece and increment the position.

CS 241 49

Long division

do {
current *= 10;
if (position < dividend.length())

current += Integer.parseInt(dividend.substring(position, position+1));
else if (position == dividend.length())

result += ".";

int quotient = current / divisor;
result += quotient;
int product = quotient * divisor;
current -= product;
position++;

} while(current != 0 || position < dividend.length());

Check if we are ready to quit.

CS 241 50

Long division

...
} while(current != 0 || position < dividend.length());

System.out.println("Result: " + result);

Print the result.

CS 241 51

Long division

...
} while(current != 0 || position < dividend.length());

System.out.println("Result: " + result);

If this condition never fails, the program will never end.

We would have an infinite loop.

CS 241 52

Preview

Going back to our “aloha” example. . .

What would happen if we asked for no alohas?

CS 241 53

Preview

Going back to our “aloha” example. . .

What would happen if we asked for no alohas?

How many times would you like me to say "Aloha"? 0
Aloha.

It always prints at least one aloha, no matter what.

CS 241 54

Preview

What we want is to be able to test at the beginning, not the end.

Program

End of

Program

Program

Beginning of

Repeated
part of

a condition
ending with

Program

Program
Beginning of

Condition

End of
Program

Repeated
part of

CS 241 55

Summary

Be able to identify the following concepts:

• Loop

• Body

• Iteration

• Counter

• Infinite loop

CS 241 56

