
CS 241 — Introduction to Problem Solving and Programming

Fundamentals of Programming

Methods. . . putting it together.

Feb 9, 2005

CS 241 1

Specification

Simulation is the modelling of a dynamic process from the real world. Often it
requires an element of randomness.

Specification:

Write a program that simulates rolling a set of dice. Given a number of dice,
a number of rolls, and a roll value, run a simulation of rolling a that set of
dice the specified number of times, reporting on the number of occurrences
of the roll value and its frequency.

Use method Random.nextInt(int) to generate a random number from 1 to
the given integer.

CS 241 2

Algorithm sketch

• Input the number of dice

• Input the number of rolls

• Input the roll value to monitor

• Run the simulation to compute the number of occurrences

• Find the frequency by dividing occurrences by rolls

• Display the results

CS 241 3

Main method

public class DiceGame {
public static void main(String[] args) {

// The number of dice to use
int dice = DocsIO.readint("How many dice do you want to use? ");
// The number of times we roll the dice
int rolls = DocsIO.readint("How many rolls would you like? ");
// The number whose frequency we are monitoring
int number = DocsIO.readint("What number should we monitor? ");

// The calculated occurrences of the monitored number
int occurrences = rollDice(dice, rolls, number);
System.out.println(number + " occurred " + occurrences +

" times with frequency " +
((double) occurrences / rolls));

}
. . .

CS 241 4

Zooming in

How do we do the simulation? We want roll dice based on the given information.

• Initialize the occurrences to 0

• Repeat numberOfRolls times

– Roll the set of dice once
– If the result equals the number we’re monitoring, increment the occurrences

• Return the number of occurrences

CS 241 5

Big rollDice method

/**
* Roll a given number of dice a given number of times, reporting
* the occurrences of a give value.
* Roll the dice in a count-controlled loop (bounded by the number of
* rolls), incrementing an accumulator each time the number occurrs.
* @param numDice The number of dice to use.
* @param numRolls How many times to roll the dice
* @param monitorNumber The value whose frequency we are counting.
* @return The integer number of occurrences of the monitored value
*/

static int rollDice(int numDice, int numRolls, int monitorNumber) {
// The accumulator
int occurrences = 0;
for (int i = 0; i < numRolls; i++)

if (rollDice(numDice) == monitorNumber)
occurrences++;

return occurrences;
}

CS 241 6

Zooming in further

How do we simulate a single roll?

• Initialize the total value of the roll to zero

• Repeat numberOfDice times

– Simulate the roll of a single die
– Add the result to the total value

• Return the value

CS 241 7

Medium rollDice method

/**
* Roll a give number of dice once, reporting the rolled value.
* Repeatedly roll one die in a count-countrolled loop (bounded by the
* number of dice), incrementing an accumulator by the value of
* the die. Return the accumlated value.
* @param numDice The number of dice to use
* @return The total value of all dice rolled.
*/

static int rollDice(int numDice) {
// The accumulator
int value = 0;
for (int i = 0; i < numDice; i++)

value += rollDice();
return value;

}

CS 241 8

Small rollDice method

To simulate a single roll of a single die, randomly generate a number from one to
size. Use a standard method Random.nextInt().

/**
* Roll a single die, reporting the value.
* Use the method Random.nextInt() to generate a new random
* number between 1 and 6, and return that number.
* @return The randomly generated number, from 1 to 6 inclusive.
*/

static int rollDice() {
return Random.nextInt(6);

}

CS 241 9

Dice simulation

ar1121: {34} java DiceGame
How many dice do you want to use? 1
How many rolls would you like? 1
What number should we monitor? 4
4 occurred 0 times with frequency 0.0
ar1121: {35} java DiceGame
How many dice do you want to use? 1
How many rolls would you like? 6
What number should we monitor? 4
4 occurred 0 times with frequency 0.0
ar1121: {36} java DiceGame
How many dice do you want to use? 1
How many rolls would you like? 6
What number should we monitor? 4
4 occurred 2 times with frequency 0.3333333333333333

CS 241 10

Dice simulation

ar1121: {37} java DiceGame
How many dice do you want to use? 2
How many rolls would you like? 1000
What number should we monitor? 2
2 occurred 36 times with frequency 0.036
ar1121: {38} java DiceGame
How many dice do you want to use? 2
How many rolls would you like? 1000
What number should we monitor? 7
7 occurred 169 times with frequency 0.169
ar1121: {39} java DiceGame
How many dice do you want to use? 2
How many rolls would you like? 1000
What number should we monitor? 11
11 occurred 57 times with frequency 0.057

CS 241 11

CS 241 — Introduction to Problem Solving and Programming

Fundamentals of Programming

Introduction to Recursion

Feb 9, 2005

CS 241 12

Recursion

Recursion is the defining of something using the thing you are defining. A method
that calls itself is recursive. A recursive method is self-referential.

Examples of recursion:

• The set of things mentioned on this slide.

• n! = n× (n− 1)!

• PINE: P ine is not e lm.

CS 241 13

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd called with a = 6, b = 0
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30

CS 241 14

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd called with a = 6, b = 0
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30

CS 241 15

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd called with a = 6, b = 0
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30

CS 241 16

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd called with a = 6, b = 0
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30

CS 241 17

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd returns 6
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30

CS 241 18

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd returns 6
gcd returns 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30

CS 241 19

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd returns 6
gcd returns 6

gcd returns 6
gcd called with a = 72, b = 30

CS 241 20

Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd returns 6
gcd returns 6

gcd returns 6
gcd returns 6

CS 241 21

Recursion

static int gcd(int a, int b) {
System.out.println("gcd called with " + a + " and " + b);
if (b == 0) {

System.out.println("returning " + a);
return a;

}
else {

int temp = gcd(b, a % b);
System.out.println("returning " + temp);
return temp;

}
}

gcd called with 72 and 30
gcd called with 30 and 12
gcd called with 12 and 6
gcd called with 6 and 0
returning 6
returning 6
returning 6
returning 6
GCD: 6

CS 241 22

Loops to recursion

How might we write a method like this, using recursion?

static void sayAloha(int n) {
for (;n > 0; n--)

System.out.println("Aloha");
}

static void sayAloha(int n) {
if (n !=0) {

System.out.println("Aloha");
sayAloha(n - 1);

}
}

CS 241 23

Loops to recursion

How might we write a method like this, using recursion?

static void sayAloha(int n) {
for (;n > 0; n--)

System.out.println("Aloha");
}

static void sayAloha(int n) {
if (n !=0) {

System.out.println("Aloha");
sayAloha(n - 1);

}
}

CS 241 24

Loops to recursion

How might we write a method like this, using recursion?

static void sayAloha(int n) {
for (;n > 0; n--)

System.out.println("Aloha");
}

static void sayAloha(int n) {
if (n !=0) {

System.out.println("Aloha");
sayAloha(n - 1);

}
}

CS 241 25

Loops to recursion

How might we write a method like this, using recursion?

static void sayAloha(int n) {
for (;n > 0; n--)

System.out.println("Aloha");
}

static void sayAloha(int n) {
if (n !=0) {

System.out.println("Aloha");
sayAloha(n - 1);

}
}

CS 241 26

Loops to recursion

How might we write a method like this, using recursion?

static void sayAloha(int n) {
for (;n > 0; n--)

System.out.println("Aloha");
}

static void sayAloha(int n) {
if (n !=0) {

System.out.println("Aloha");
sayAloha(n - 1);

}
}

CS 241 27

