
CS 241 — Introduction to Problem Solving and Programming

Fundamentals of Programming

Methods. . . putting it together.

Feb 9, 2005
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Specification

Simulation is the modelling of a dynamic process from the real world. Often it
requires an element of randomness.

Specification:

Write a program that simulates rolling a set of dice. Given a number of dice,
a number of rolls, and a roll value, run a simulation of rolling a that set of
dice the specified number of times, reporting on the number of occurrences
of the roll value and its frequency.

Use method Random.nextInt(int) to generate a random number from 1 to
the given integer.
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Algorithm sketch

• Input the number of dice

• Input the number of rolls

• Input the roll value to monitor

• Run the simulation to compute the number of occurrences

• Find the frequency by dividing occurrences by rolls

• Display the results
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Main method

public class DiceGame {
public static void main(String[] args) {

// The number of dice to use
int dice = DocsIO.readint("How many dice do you want to use? ");
// The number of times we roll the dice
int rolls = DocsIO.readint("How many rolls would you like? ");
// The number whose frequency we are monitoring
int number = DocsIO.readint("What number should we monitor? ");

// The calculated occurrences of the monitored number
int occurrences = rollDice(dice, rolls, number);
System.out.println(number + " occurred " + occurrences +

" times with frequency " +
((double) occurrences / rolls));

}
. . .
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Zooming in

How do we do the simulation? We want roll dice based on the given information.

• Initialize the occurrences to 0

• Repeat numberOfRolls times

– Roll the set of dice once
– If the result equals the number we’re monitoring, increment the occurrences

• Return the number of occurrences
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Big rollDice method

/**
* Roll a given number of dice a given number of times, reporting
* the occurrences of a give value.
* Roll the dice in a count-controlled loop (bounded by the number of
* rolls), incrementing an accumulator each time the number occurrs.
* @param numDice The number of dice to use.
* @param numRolls How many times to roll the dice
* @param monitorNumber The value whose frequency we are counting.
* @return The integer number of occurrences of the monitored value
*/

static int rollDice(int numDice, int numRolls, int monitorNumber) {
// The accumulator
int occurrences = 0;
for (int i = 0; i < numRolls; i++)

if (rollDice(numDice) == monitorNumber)
occurrences++;

return occurrences;
}
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Zooming in further

How do we simulate a single roll?

• Initialize the total value of the roll to zero

• Repeat numberOfDice times

– Simulate the roll of a single die
– Add the result to the total value

• Return the value
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Medium rollDice method

/**
* Roll a give number of dice once, reporting the rolled value.
* Repeatedly roll one die in a count-countrolled loop (bounded by the
* number of dice), incrementing an accumulator by the value of
* the die. Return the accumlated value.
* @param numDice The number of dice to use
* @return The total value of all dice rolled.
*/

static int rollDice(int numDice) {
// The accumulator
int value = 0;
for (int i = 0; i < numDice; i++)

value += rollDice();
return value;

}
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Small rollDice method

To simulate a single roll of a single die, randomly generate a number from one to
size. Use a standard method Random.nextInt().

/**
* Roll a single die, reporting the value.
* Use the method Random.nextInt() to generate a new random
* number between 1 and 6, and return that number.
* @return The randomly generated number, from 1 to 6 inclusive.
*/

static int rollDice() {
return Random.nextInt(6);

}
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Dice simulation

ar1121: {34} java DiceGame
How many dice do you want to use? 1
How many rolls would you like? 1
What number should we monitor? 4
4 occurred 0 times with frequency 0.0
ar1121: {35} java DiceGame
How many dice do you want to use? 1
How many rolls would you like? 6
What number should we monitor? 4
4 occurred 0 times with frequency 0.0
ar1121: {36} java DiceGame
How many dice do you want to use? 1
How many rolls would you like? 6
What number should we monitor? 4
4 occurred 2 times with frequency 0.3333333333333333
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Dice simulation

ar1121: {37} java DiceGame
How many dice do you want to use? 2
How many rolls would you like? 1000
What number should we monitor? 2
2 occurred 36 times with frequency 0.036
ar1121: {38} java DiceGame
How many dice do you want to use? 2
How many rolls would you like? 1000
What number should we monitor? 7
7 occurred 169 times with frequency 0.169
ar1121: {39} java DiceGame
How many dice do you want to use? 2
How many rolls would you like? 1000
What number should we monitor? 11
11 occurred 57 times with frequency 0.057
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Introduction to Recursion
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Recursion

Recursion is the defining of something using the thing you are defining. A method
that calls itself is recursive. A recursive method is self-referential.

Examples of recursion:

• The set of things mentioned on this slide.

• n! = n× (n− 1)!

• PINE: P ine is not e lm.
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Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd called with a = 6, b = 0
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30
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Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd returns 6
gcd called with a = 12, b = 6

gcd called with a = 30, b = 12
gcd called with a = 72, b = 30
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Recursion

static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

gcd returns 6
gcd returns 6

gcd returns 6
gcd returns 6
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Recursion

static int gcd(int a, int b) {
System.out.println("gcd called with " + a + " and " + b);
if (b == 0) {

System.out.println("returning " + a);
return a;

}
else {

int temp = gcd(b, a % b);
System.out.println("returning " + temp);
return temp;

}
}

gcd called with 72 and 30
gcd called with 30 and 12
gcd called with 12 and 6
gcd called with 6 and 0
returning 6
returning 6
returning 6
returning 6
GCD: 6
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Loops to recursion

How might we write a method like this, using recursion?

static void sayAloha(int n) {
for (;n > 0; n--)

System.out.println("Aloha");
}

static void sayAloha(int n) {
if (n !=0) {

System.out.println("Aloha");
sayAloha(n - 1);

}
}
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