Applied Topics

Towards better data storage:
Multi-dimensional arrays and file I/O
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Arrays are used to store elements of the same type that have an ordering.

Problem:

Some sets of data have more than one level (or dimension) of order; they
make more sense as tables than as lists.

Examples:

Experimental results based on two variables; matrices; any sort of table. . .
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A Is an object comprised of elements, all the same type,
organized and accessible by a series of indices.

Most frequent use: two-dimensional array. Picture as a matrix or table.

0O 1 2 3 4 5
o1 2 3 4 5 6
112 4 6 38 10 12
213 6 9 12 15 18
314 8 12 16 20 24
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Declaration /allocation:
int[] [] table = new int[rows] [columns];
The size of the table is rows X columns.

Access:

table[i] [j]
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Technically, the type of a two-dimensional array is

table[i] [j]
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Technically, the type of a two-dimensional array is

table[i] [j]
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Technically, the type of a two-dimensional array is

table[i] [j]
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What is

table.length
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What is
table.length
The number of rows

How do you find the number of columns?
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What is
table.length
The number of rows

How do you find the number of columns?

table[0].length
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Addition table example. . .

CS 241

11



Since a two-dimensional array is an array of arrays of base types, here's an alternate
way of allocating one:

int[] [] table = new int[rows] [] // an array of int arrays, of length rows

for (int i = 0; i < table.length; i++)
table[i] = new int[columns];

And the rows do not all have to be the same length—nothing is stopping you from making a
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Problem:

Data in computer memory lasts only the duration of the program. Often data
needs to saved for a longer-term and retrieved later, either in a later run of

the same program or by a different program.

Example: A program you write (the data) in Xemacs must be used later by
Xemacs (for revisions) and by javac (for compilation)

Solution:

Write the data to and retrieve it from auxiliary memory (that is, a disk)
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Input and output is conceptualized by streams.

Java provides a class for writing to a file, FileOutputStream:

class FileOutputStream {
public FileOutputStream(String name)

public void close();
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FileOutputStream's methods for writing are very difficult to use (they allow
writing only of bytes and byte arrays). To make it easier, there is a PrintWriter
class which, has an output stream as an instance variable and has more usable
methods.

class PrintWriter {
public PrintWriter (OutputStream out);

public void close();
public void println(String x);
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To read in from a file, Java provides a FileQutputStream class. We'll use a class
FileReader, which automatically generates a FileOutputStream as an instance
variable.

class FileReader {

public FileReader(String filename);

CS 241 16



Finally, the actual reading in of lines of text are done by another class, such as
BufferedReader.

class BufferedReader {
public BufferedReader (Reader in);
public void close();

public String readLine();
public boolean ready();
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