Applied Topics

Towards better data storage:
Multi-dimensional arrays and file I/O

CS 241



Arrays are used to store elements of the same type that have an ordering.

Problem:

Some sets of data have more than one level (or dimension) of order; they
make more sense as tables than as lists.

Examples:

Experimental results based on two variables; matrices; any sort of table. . .

CS 241



A Is an object comprised of elements, all the same type,
organized and accessible by a series of indices.

Most frequent use: two-dimensional array. Picture as a matrix or table.

0O 1 2 3 4 5
o1 2 3 4 5 6
112 4 6 38 10 12
213 6 9 12 15 18
314 8 12 16 20 24

CS 241 3



Declaration /allocation:
int[] [] table = new int[rows] [columns];
The size of the table is rows X columns.

Access:

table[i] [j]

CS 241



Technically, the type of a two-dimensional array is

table[i] [j]

CS 241



Technically, the type of a two-dimensional array is

table[i] [j]

CS 241



Technically, the type of a two-dimensional array is

table[i] [j]

CS 241



What is

table.length

CS 241



What is
table.length
The number of rows

How do you find the number of columns?

CS 241



What is
table.length
The number of rows

How do you find the number of columns?

table[0].length

CS 241

10



Addition table example. . .

CS 241

11



Since a two-dimensional array is an array of arrays of base types, here's an alternate
way of allocating one:

int[] [] table = new int[rows] [] // an array of int arrays, of length rows

for (int i = 0; i < table.length; i++)
table[i] = new int[columns];

And the rows do not all have to be the same length—nothing is stopping you from making a

CS 241 12



Problem:

Data in computer memory lasts only the duration of the program. Often data
needs to saved for a longer-term and retrieved later, either in a later run of

the same program or by a different program.

Example: A program you write (the data) in Xemacs must be used later by
Xemacs (for revisions) and by javac (for compilation)

Solution:

Write the data to and retrieve it from auxiliary memory (that is, a disk)

CS 241 13



Input and output is conceptualized by streams.

Java provides a class for writing to a file, FileOutputStream:

class FileOutputStream {
public FileOutputStream(String name)

public void close();

CS 241

14



FileOutputStream's methods for writing are very difficult to use (they allow
writing only of bytes and byte arrays). To make it easier, there is a PrintWriter
class which, has an output stream as an instance variable and has more usable
methods.

class PrintWriter {
public PrintWriter (OutputStream out);

public void close();
public void println(String x);

CS 241 15



To read in from a file, Java provides a FileQutputStream class. We'll use a class
FileReader, which automatically generates a FileOutputStream as an instance
variable.

class FileReader {

public FileReader(String filename);

CS 241 16



Finally, the actual reading in of lines of text are done by another class, such as
BufferedReader.

class BufferedReader {
public BufferedReader (Reader in);
public void close();

public String readLine();
public boolean ready();

CS 241 17



