
CS 241 — Introduction to Problem Solving and Programming

Object-Oriented Programming

Subtype Polymorphism

Mar 23, 2005

CS 241 1

Interfaces

What happened??

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

CS 241 2

Interfaces

meas has type Measurements, but we are assigning it a Measurements1 or
Measurements2.

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

CS 241 3

Interfaces

At this point, meas could be a Measurements1 or Measurements2.

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

CS 241 4

Interfaces

Should the language allow this?

Is this intuitive?

Measurements1 and
Measurements2 are each a
particular variety of
Measurements, so it makes
sense that one could use them in
place of a Measurements.

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

CS 241 5

Interfaces

Should the language allow this?

Can this go wrong?

Measurements1 and
Measurements2 have the same
public members, so any member
of Measurements referred to has
an implementation in the classes.

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

CS 241 6

Types

A type is a category of data recognized for two reasons:

1. How the data is stored in the computers memory

2. How the data is used

a = x + y;

What difference does it make if x and y are Strings or ints?

CS 241 7

Types and Subtypes

We’ve seen that classes define types. Interfaces also define types, but only the
second category.

A class that implements an interface fills in the details of the first (and possibly
adds to the second).

A class that implements an interface defines a subtype of the interface’s type.

CS 241 8

Types as sets

5 ∈ Z ⊆ R

a ∈ {a, b} ⊆ {a, b, c}

Think:

new Measurements1() ∈ Measurements1 ⊆ Measurements

and therefore

new Measurements1() ∈ Measurements

CS 241 9

Everyday examples

An Escape is a subtype of Ford, and Ford is a subtype of automobile. My Escape
is an Escape, it is a Ford, and it is an automobile.

Suppose might be a sophomore computer science student. He is a sophomore, he
is a computer science major, and he is a student. Sophomore and computer science
major are each subtypes of student.

This is called an is-a relationship.

CS 241 10

Types and subtypes

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

What is the type of Meas? Depends on what you mean by “what type”. . .

CS 241 11

Static and dynamic type

A a = new B();

This will work if B is a subtype of A.

The static (or declared or compile-time) type of a variable is the type given at its
declaration.

The dynamic (or run-time or concrete) type of a variable (or any other expression)
is the class of the object to which it refers at a given moment in the program.

Dynamic type ⊆ Static type

CS 241 12

Interfaces

Measurements meas;
if (DocsIO.readint("Use version 1 or 2?") == 1)

meas = new Measurements1();
else

meas = new Measurements2();
meas.add(DocsIO.readdouble("Next reading-->"));

The problem is, what add method will be called?

CS 241 13

Polymorphism

x.m(a, b)

When a method invocation is executed, the method in the dynamic type class of
the receiver is the one called.

(Only the static types of the parameters are considered.)

The ability for a variable or expression to be treated according to its (possibly
varied) dynamic type is called (subtype) polymorphism

polus— many

morphe— shape

CS 241 14

Polynomial example

Specification:

Write a class that models a polynomial. The class should support

• Printing the polynomial as a string
• Evaluate the polynomial (as a function) for a value of x
• Compute the derivative (another polynomial)
• Compute the definite integral for given lower and upper bounds.

CS 241 15

Function example

Polynomials are not the only structures that have these concepts or functionality.

These operations exist for all (differentiable) functions, of which polynomial is a
subtype.

New task: write Rational and Step function classes; let them implement the
same interface as Polynomial

CS 241 16

Function example

public interface Function
public String asString();
public double evaluate(double x);
public Function derivative();
public double integrate(double lower, double upper);

CS 241 17

Function example

public class Polynomial implements Function {
...
public Function derivative() {

// The array to hold the coefficients for the new polynomial
double[] newCoefficients = new double[coefficients.length - 1];
for (int i = 1; i < coefficients.length; i++)

newCoefficients[i - 1] = coefficients[i] * i;
return new Polynomial(newCoefficients);

}
...

derivative() can return a Polynomial even though its return type is Function
because a Polynomial is a Function.

CS 241 18

Function example

public class Polynomial implements Function {
public Polynomial product(Polynomial other) {

...
}
public Polynomial sum(Polynomial other) {

...
}
public Polynomial difference(Polynomial other) {

...
}

}

Assume these are written. . . A class can always implement more than its declared
interface.

CS 241 19

Function example

public class Rational implements Function {

private Polynomial numerator;
private Polynomial denominator;

public Rational(Polynomial numerator, Polynomial denominator) {
this.numerator = numerator;
this.denominator = denominator;

}

public Rational() {
System.out.println("Numerator:");
numerator = new Polynomial();
System.out.println("Denominator:");
denominator = new Polynomial();

}

CS 241 20

Function example

public String asString() {
String numString = numerator.asString();
String denomString = denominator.asString();
String toReturn = numString + "/n";
for (int i = 0; i < numString.length() || i < denomString.length(); i++)

toReturn += "-";
toReturn += "/n" + denomString;
return toReturn;

}

public double evaluate(double x) {
return numerator.evaluate(x) / denominator.evaluate(x);

}

CS 241 21

Function example

public Function derivative() {
Polynomial derivNumerator =

denominator.product((Polynomial) numerator.derivative())
.difference(numerator.product((Polynomial) denominator.derivative()));

Polynomial derivDenominator =
denominator.product(denominator);

return new Rational(derivNumerator, derivDenominator);
}

public double integrate(double lower, double upper) {
...

}
}

CS 241 22

Function example

public class Step implements Function {

private double stepPoint;
private double stepLevel;

public Step(double stepPoint, double stepLevel) {
this.stepPoint = stepPoint;
this.stepLevel = stepLevel;

}

public Step() {
stepPoint = DocsIO.readdouble("Step point--> ");
stepLevel = DocsIO.readdouble("Step level--> ");

}

CS 241 23

Function example

public String asString() {
return 0 + " if x < " + stepPoint + ", " + stepLevel + " otherwise";

}

public double evaluate(double x) {
if (x < stepPoint)

return 0;
else

return stepLevel;
}

CS 241 24

Function example

public Function derivative() {
double[] zero = { 0.0 };
return new Polynomial(zero);

}

public double integrate(double lower, double upper) {
if (lower == upper) return 0;
else if (lower > upper) return - integrate(upper, lower);
else if (upper < stepPoint) return 0;
else if (lower > stepPoint) return stepLevel * (upper - lower);
else return stepLevel * (upper - stepPoint);

}
}

CS 241 25

Function example

public class FunctionDriver {
public static void main(String[] args) {

// The function on which we run our tests
Function test;
int choice = DocsIO.readint("1=Polynomial, 2=Rational, 3=Step");
if (choice == 1)

test = new Polynomial();
else if (choice == 2)

test = new Rational();
else

test = new Step();
System.out.println(test.asString());
System.out.println(test.derivative().asString());

CS 241 26

Function example

public Function derivative() {
double[] zero = { 0.0 };
return new Polynomial(zero);

// Value on which we’ll evaulate the function
double value = DocsIO.readdouble("Test value: ");
System.out.println(test.evaluate(value));

// Bounds for the definite integral
double lowerBound = DocsIO.readdouble("Lower bound: ");
double upperBound = DocsIO.readdouble("Upper bound: ");
System.out.println(test.integrate(lowerBound, upperBound));

}
}

CS 241 27

Think about. . .

Library example

Books, magazines, journals, recordings. . .

Faculty, staff, students. . .

CS 241 28

Summary

• Type

• Subtype

• Static type

• Dynamic type

• Polymorphism

CS 241 29

