
CS 241 — Introduction to Problem Solving and Programming

Fundamentals of Programming

Primitive types, Strings, and operators

Jan 14, 2005

CS 241 1



Outline/overview

• Types

• Arithmetic

• Expressions vs. statements

• Operators

• Strings

CS 241 2



Variables and types

Recall this example:

public class Variable {

public static void main (String[] args) {

int number;
number = 5;
System.out.println("Here is a number: " + 5);
System.out.println("Here is the number again: " + number);

}
}

CS 241 3



Variables and types

Look more carefully at the declaration.

int number;

• A declaration gives information about the variable.

• int says that this variable is used to store integers.

• This kind of information is called the variable’s type.

CS 241 4



Primitive types

These types are called primitive types.

? int for integers

short for small integers, using less memory

long for big integers, using extra memory

float for real numbers in scientific notation

? double for more precise real numbers, using extra memory

? char for typographic characters (letters, digits, punctuation...)

? boolean for booleans (truth values)

byte for bytes of memory

CS 241 5



Types

The code

int number;
number = 7.3;

will be rejected by the compiler.

ar1121: 177 javac Variable.java
Variable.java:7: possible loss of precision
found : double
required: int

number = 7.3;
^

1 error

CS 241 6



Two declaration shortcuts

A variable’s declaration and initialization can be combined:

int x = 47;

Variables of the same type can be declared together (note the comma):

int x, y;

CS 241 7



Arithmetic

Now try something more interesting:

public class Sum {
public static void main (String[] args) {

int first, second, sum;

first = 5;
second = 8;

System.out.println("The numbers are " + first
+ " and " + second);

sum = first + second;

System.out.println("Their sum is " + sum);
}

}

..

The numbers are 5 and 8
Their sum is 13

CS 241 8



Printing text

Notice this statement:

System.out.println("The numbers are " + first
+ " and " + second);

• Several parts of text may be joined together.

• We can go to the next line in the source program.

• We need to add spaces in the quotes for it to look nice.

CS 241 9



Arithmetic

More interesting is

sum = first + second;

• The plus sign is used for addition (surprise).

• Adding two ints produces an int.

• The result can be stored in an int-typed variable.

CS 241 10



Expressions and statements

An expression is programming language construct that has a value (or returns a
value, or evaluates to a value).

A statement is a programming language construct that has no value but is executed
for its effect.

first + second expression value: 5

sum = first + second; statement effect: sum given value 5

A semi-colon makes an expression a statement.

CS 241 11



Syntax forms

Some syntax forms we know:

Declaration: Type Variable, Variable, . . . ;
Assignment: Variable = Expression;
AdditionExpression: Expression + Expression

CS 241 12



Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second, quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

What’s the output?

CS 241 13



Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second, quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

..

ar1121: 198 javac Quotient.java
ar1121: 199 java Quotient
The numbers are 23 and 4
Their quotient is 5

CS 241 14



Arithmetic and types

Why?

first / second

This performs integer division ; both subexpressions are ints, the result is an
int, and the variable storing the result is an int.

CS 241 15



Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second;
quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

How about this?

CS 241 16



Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second;
quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

..

ar1121: 206 javac Quotient.java
ar1121: 207 java Quotient
The numbers are 23 and 4
Their quotient is 5.0

CS 241 17



Arithmetic and types

Why?

quotient = first / second;

This still performs integer division, the result is merely stored in a double variable.

The int 5 is converted or cast to the double 5.0.

CS 241 18



Arithmetic and types

public class Quotient {
public static void main (String[] args) {

double first, second, quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

...

ar1121: 213 javac Quotient.java
ar1121: 214 java Quotient
The numbers are 23.0 and 4.0
Their quotient is 5.75

CS 241 19



Arithmetic and types

• An operator is a symbol (usually based on punctuation characters) that performs
an operation that is built into the language.

• Values given to the operator are called operands.

• What operators do depends on the types of their operands.

CS 241 20



Arithmetic and types

What if we want to treat an integer as a real number? We can convert it:

int first, second;
double quotient;
first = 23;
second = 4;

quotient = (double) first / (double) second;

...

The numbers are 23 and 4
Their quotient is 5.75

This is called type casting (also type promotion or type coercion).

CS 241 21



Automatic type casting

Sometimes this happens automatically.

int first, second;
quotient;

quotient = first / second;

..

The numbers are 23 and 4
Their quotient is 5.0

Casts happen automatically when converting from less memory/precision to more
memory/precision. Compatibility chain:

byte --> short --> int --> long --> float --> double

CS 241 22



Type casting

The compiler accepts the first and rejects the second:

double x = 5;
int y = 5.2;

...

Program.java:6: possible loss of precision
found : double
required: int

int y = 5.2;
^

1 error

CS 241 23



Arithmetic operators

+ Addition int and double
- Subtraction int and double
∗ Multiplication int and double
/ Division int and double
% Modulus (remainder) int

CS 241 24



Modulus operator

int first, second, quotient, remainder;
first = 23;
second = 4;
quotient = first / second;
remainder = first % second;
System.out.println(first + " / " + second + " = " + quotient

+ " R " + remainder);

..

23 / 4 = 5 R 3

CS 241 25



Assignment chaining

An assignment is an expression— although it has a side effect, it also has a value.

Variable = Expression

Side effect. Store the value of Expression in Variable.

Value. Return the value of Variable.

This means we can chain assignments:

y = x = 5;

This makes both x and y equal to 5.

CS 241 26



Assignment and arithmetic

Assignment shorthands:

x += n x = x + n
x -= n x = x - n
x *= n x = x * n
x /= n x = x / n
x %= n means x = x % n
x++ x = x + 1 but return old x
++x x = x + 1
x-- x = x - 1 but return old x
--x x = x - 1

Unary (one operand) operator:

-x negates x.

CS 241 27



Arithmetic operators

ArithmeticExpression: Expression BinOp Expression

You may combine expressions into arbitrarily long expressions.:

y += x = 2 + 3 * 5 - 2;

The value and effects of these expressions and statement depend on

Precedence. Which operators are executed first (mathematical order of opera-
tion).

Associativity. What order operators of equal precedence are executed (left asso-
ciative: left-to-right; right associative: right-to-left).

CS 241 28



Precedence and associativity

Operators we have seen so far.

Precedence Associativity

Highest precedence ++, --, unary -, and type casting Right associative

*, /, and % Left associative

+ and - Left associative

Lowest precedence = and friends Right associative

CS 241 29



Precedence and associativity

y += x = 2 + 3 * 5 - 2;

CS 241 30



Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

CS 241 31



Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

y += x = 17 - 2;

CS 241 32



Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

y += x = 17 - 2;

y += x = 15;

CS 241 33



Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

y += x = 17 - 2;

y += x = 15;

y += 15;

CS 241 34



Parentheses

To override precedence rules, use parentheses.

(Parentheses together make an operator which has the highest precedence)

Java: 43 operators, 14 precedence classes.

Don’t memorize. . . remember a few obvious ones and use parenthesis when in
doubt.

CS 241 35



Characters

A char is any single letter, digit, punctuation, or anything you would make with a
keystroke.

A literal char value must be enclosed in single quotes.

char aChar;
aChar = ’A’;
System.out.println("A character: " + aChar);

...

A character: A

CS 241 36



Characters

What if you want to store a single quote itself?

Use an escape sequence– a backslash followed by a special character.

char aChar;
aChar = ’\’’;
System.out.println("A character: " + aChar);

...

A character: ’

CS 241 37



Characters

Commonly used escape sequences:

Sequence Description

\´ Single quote

\" Double quote

\ n New line

\ t Tab

CS 241 38



Strings

A block of several characters is called a string.

To model strings, Java has a type String.

String is not a primitive type. Later, when we look at classes, we’ll see that it is actually a class.

CS 241 39



String

You can declare variables of type String. Literals are enclosed with double quotes.

String greeting;
greeting = "aloha, ahoy, bon jour, salve, ni hao";
System.out.println(greeting);

...

ar1121: 256 java FirstString
aloha, ahoy, bon jour, salve, ni hao

Notice how greeting is used in println.

CS 241 40



Strings

The use of the plus we’ve seen is called concatenation.

concatenate. To link together as in a series or chain. (Merriam-Webster.) From Latin

catena, chain.

String greeting, message;
greeting = "aloha";
System.out.println(greeting + " ahoy");
greeting = greeting + " salve";
System.out.println(greeting);
message = "ni hao";
greeting += message;
System.out.println(greeting);

CS 241 41



Strings

String greeting, message;
greeting = "aloha";
System.out.println(greeting + " ahoy");
greeting = greeting + " salve";
System.out.println(greeting);
message = "ni hao";
greeting += message;
System.out.println(greeting);

...

aloha ahoy
aloha salve
aloha salveni hao

Note that you must put spaces explicitly where you want them.

CS 241 42



Strings

What’s really happening here?

System.out.println("Here is a number: " + 5);

CS 241 43



Strings

What’s really happening here?

System.out.println("Here is a number: " + 5);

When plus is used with at least one String, it is interpreted as concatenation, and
the other value is automatically cast to String.

CS 241 44



Strings

Strings have methods (something we’ll learn about in a couple weeks) which define
operations on them.

For example:

greeting.length()

Calculates the length (number of characters) in the string stored in variable
greeting.

CS 241 45



Strings

String greeting = "aloha and ahoy!";
int greetingLength = greeting.length();
System.out.println("\"" + greeting + "\" is " + greetingLength

+ " characters long.");

...

"aloha and ahoy!" is 15 characters long.

• Make sure you understand what we did with slashes and quotes.

• Note that spaces and punctuation are included in the count.

• Note that length() returns an int when it is called. This is its return type.

CS 241 46



String methods

There are methods to convert a String to all lower case or all uppercase.

String virgil = "Arma virumque cano Trojae qui primus ob oris";
String lowerCase = virgil.toLowerCase();
String upperCase = virgil.toUpperCase();

System.out.println(virgil);
System.out.println(lowerCase);
System.out.println(upperCase);

...

Arma virumque cano Trojae qui primus ob oris
arma virumque cano trojae qui primus ob oris
ARMA VIRUMQUE CANO TROJAE QUI PRIMUS OB ORIS

CS 241 47



String methods

Note:

String lowerCase = virgil.toLowerCase();

• The return type of toLowerCase() is String.

• The contents of the variable virgil is unchanged.

CS 241 48



String methods

trim() removes leading or trailing whitespace.

String message = " \n O nuntii mihi beati! ";
String trimmedMessage = message.trim();

System.out.println("<" + message + ">");
System.out.println("<" + trimmedMessage + ">");

...

<
O nuntii mihi beati! >

<O nuntii mihi beati!>

CS 241 49



String

A String is represented as an ordered sequence of characters indexed starting at
zero.

"dux femina facti"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d u x f e m i n a f a c t i

We’ll find that indexing from zero is true for other data structures . . .

CS 241 50



String

charAt(position) returns a char at a given position.

String message = "timidumque ad lumina lumen attolens";
char letter8 = message.charAt(8);
char letter16 = message.charAt(16);

System.out.println(message);
System.out.println(letter8 + " " + letter16);

...

timidumque ad lumina lumen attolens
u m

CS 241 51



String

substring(...) returns a String that is part of the String on which it is called.

• Given one int, it interprets it as the starting point and returns the string from there to the end.

• Given two ints, it interprets them as the starting and ending points.

String message = "Varus me meus ad suos amores";
String subMessage1 = message.substring(22);
String subMessage2 = message.substring(6, 8);

System.out.println(message);
System.out.println(subMessage1);
System.out.println(subMessage2);

...

Varus me meus ad suos amores
amores
me Later we’ll see that this is an instance of overloading a method. . .

CS 241 52



Strings

Note that the second index refers to one past the last item in the range.

0 1 2 3 4 5 6 7 8 9

q u o d c u m q u e

↑ ↑

String message = "quodcumque";
String subMessage = message.substring(4,7 );

System.out.println(message);
System.out.println(subMessage);

...

quodcumque
cum

CS 241 53



String

A String variable can change, but a String itself cannot (it is immutable).

String message1 = "o fortunati quorum moenia iam surgunt";
String message2 = message1;
message1 += ".";

System.out.println("message1: " + message1);
System.out.println("message2: " + message2);

...

message1: o fortunati quorum moenia iam surgunt.
message2: o fortunati quorum moenia iam surgunt

CS 241 54



Summary

Be able to identify the following concepts:

• Type

• int, double, and char

• Expression

• Statement

• Operator and operands

• Integer division

• Modulus

• Type cast

• Assignment shorthands and increment/decrement

• Precedence

• Associativity

• Escape sequence

• String

• Concatenation

• String methods

• Indexing from zero

CS 241 55


