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Outline/overview

• Types

• Arithmetic

• Expressions vs. statements

• Operators

• Strings
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Variables and types

Recall this example:

public class Variable {

public static void main (String[] args) {

int number;
number = 5;
System.out.println("Here is a number: " + 5);
System.out.println("Here is the number again: " + number);

}
}
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Variables and types

Look more carefully at the declaration.

int number;

• A declaration gives information about the variable.

• int says that this variable is used to store integers.

• This kind of information is called the variable’s type.
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Primitive types

These types are called primitive types.

? int for integers

short for small integers, using less memory

long for big integers, using extra memory

float for real numbers in scientific notation

? double for more precise real numbers, using extra memory

? char for typographic characters (letters, digits, punctuation...)

? boolean for booleans (truth values)

byte for bytes of memory
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Types

The code

int number;
number = 7.3;

will be rejected by the compiler.

ar1121: 177 javac Variable.java
Variable.java:7: possible loss of precision
found : double
required: int

number = 7.3;
^

1 error
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Two declaration shortcuts

A variable’s declaration and initialization can be combined:

int x = 47;

Variables of the same type can be declared together (note the comma):

int x, y;
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Arithmetic

Now try something more interesting:

public class Sum {
public static void main (String[] args) {

int first, second, sum;

first = 5;
second = 8;

System.out.println("The numbers are " + first
+ " and " + second);

sum = first + second;

System.out.println("Their sum is " + sum);
}

}

..

The numbers are 5 and 8
Their sum is 13
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Printing text

Notice this statement:

System.out.println("The numbers are " + first
+ " and " + second);

• Several parts of text may be joined together.

• We can go to the next line in the source program.

• We need to add spaces in the quotes for it to look nice.
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Arithmetic

More interesting is

sum = first + second;

• The plus sign is used for addition (surprise).

• Adding two ints produces an int.

• The result can be stored in an int-typed variable.
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Expressions and statements

An expression is programming language construct that has a value (or returns a
value, or evaluates to a value).

A statement is a programming language construct that has no value but is executed
for its effect.

first + second expression value: 5

sum = first + second; statement effect: sum given value 5

A semi-colon makes an expression a statement.
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Syntax forms

Some syntax forms we know:

Declaration: Type Variable, Variable, . . . ;
Assignment: Variable = Expression;
AdditionExpression: Expression + Expression
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Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second, quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

What’s the output?
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Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second, quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

..

ar1121: 198 javac Quotient.java
ar1121: 199 java Quotient
The numbers are 23 and 4
Their quotient is 5
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Arithmetic and types

Why?

first / second

This performs integer division ; both subexpressions are ints, the result is an
int, and the variable storing the result is an int.
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Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second;
quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

How about this?
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Arithmetic and types

public class Quotient {
public static void main (String[] args) {

int first, second;
quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

..

ar1121: 206 javac Quotient.java
ar1121: 207 java Quotient
The numbers are 23 and 4
Their quotient is 5.0
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Arithmetic and types

Why?

quotient = first / second;

This still performs integer division, the result is merely stored in a double variable.

The int 5 is converted or cast to the double 5.0.
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Arithmetic and types

public class Quotient {
public static void main (String[] args) {

double first, second, quotient;
first = 23;
second = 4;

System.out.println("The numbers are " + first
+ " and " + second);

quotient = first / second;

System.out.println("Their quotient is " + quotient);
}

}

...

ar1121: 213 javac Quotient.java
ar1121: 214 java Quotient
The numbers are 23.0 and 4.0
Their quotient is 5.75
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Arithmetic and types

• An operator is a symbol (usually based on punctuation characters) that performs
an operation that is built into the language.

• Values given to the operator are called operands.

• What operators do depends on the types of their operands.
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Arithmetic and types

What if we want to treat an integer as a real number? We can convert it:

int first, second;
double quotient;
first = 23;
second = 4;

quotient = (double) first / (double) second;

...

The numbers are 23 and 4
Their quotient is 5.75

This is called type casting (also type promotion or type coercion).
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Automatic type casting

Sometimes this happens automatically.

int first, second;
quotient;

quotient = first / second;

..

The numbers are 23 and 4
Their quotient is 5.0

Casts happen automatically when converting from less memory/precision to more
memory/precision. Compatibility chain:

byte --> short --> int --> long --> float --> double
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Type casting

The compiler accepts the first and rejects the second:

double x = 5;
int y = 5.2;

...

Program.java:6: possible loss of precision
found : double
required: int

int y = 5.2;
^

1 error
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Arithmetic operators

+ Addition int and double
- Subtraction int and double
∗ Multiplication int and double
/ Division int and double
% Modulus (remainder) int
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Modulus operator

int first, second, quotient, remainder;
first = 23;
second = 4;
quotient = first / second;
remainder = first % second;
System.out.println(first + " / " + second + " = " + quotient

+ " R " + remainder);

..

23 / 4 = 5 R 3

CS 241 25



Assignment chaining

An assignment is an expression— although it has a side effect, it also has a value.

Variable = Expression

Side effect. Store the value of Expression in Variable.

Value. Return the value of Variable.

This means we can chain assignments:

y = x = 5;

This makes both x and y equal to 5.

CS 241 26



Assignment and arithmetic

Assignment shorthands:

x += n x = x + n
x -= n x = x - n
x *= n x = x * n
x /= n x = x / n
x %= n means x = x % n
x++ x = x + 1 but return old x
++x x = x + 1
x-- x = x - 1 but return old x
--x x = x - 1

Unary (one operand) operator:

-x negates x.
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Arithmetic operators

ArithmeticExpression: Expression BinOp Expression

You may combine expressions into arbitrarily long expressions.:

y += x = 2 + 3 * 5 - 2;

The value and effects of these expressions and statement depend on

Precedence. Which operators are executed first (mathematical order of opera-
tion).

Associativity. What order operators of equal precedence are executed (left asso-
ciative: left-to-right; right associative: right-to-left).
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Precedence and associativity

Operators we have seen so far.

Precedence Associativity

Highest precedence ++, --, unary -, and type casting Right associative

*, /, and % Left associative

+ and - Left associative

Lowest precedence = and friends Right associative
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Precedence and associativity

y += x = 2 + 3 * 5 - 2;
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Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

CS 241 31



Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

y += x = 17 - 2;
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Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

y += x = 17 - 2;

y += x = 15;
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Precedence and associativity

y += x = 2 + 3 * 5 - 2;

y += x = 2 + 15 - 2;

y += x = 17 - 2;

y += x = 15;

y += 15;
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Parentheses

To override precedence rules, use parentheses.

(Parentheses together make an operator which has the highest precedence)

Java: 43 operators, 14 precedence classes.

Don’t memorize. . . remember a few obvious ones and use parenthesis when in
doubt.
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Characters

A char is any single letter, digit, punctuation, or anything you would make with a
keystroke.

A literal char value must be enclosed in single quotes.

char aChar;
aChar = ’A’;
System.out.println("A character: " + aChar);

...

A character: A
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Characters

What if you want to store a single quote itself?

Use an escape sequence– a backslash followed by a special character.

char aChar;
aChar = ’\’’;
System.out.println("A character: " + aChar);

...

A character: ’
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Characters

Commonly used escape sequences:

Sequence Description

\´ Single quote

\" Double quote

\ n New line

\ t Tab
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Strings

A block of several characters is called a string.

To model strings, Java has a type String.

String is not a primitive type. Later, when we look at classes, we’ll see that it is actually a class.
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String

You can declare variables of type String. Literals are enclosed with double quotes.

String greeting;
greeting = "aloha, ahoy, bon jour, salve, ni hao";
System.out.println(greeting);

...

ar1121: 256 java FirstString
aloha, ahoy, bon jour, salve, ni hao

Notice how greeting is used in println.
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Strings

The use of the plus we’ve seen is called concatenation.

concatenate. To link together as in a series or chain. (Merriam-Webster.) From Latin

catena, chain.

String greeting, message;
greeting = "aloha";
System.out.println(greeting + " ahoy");
greeting = greeting + " salve";
System.out.println(greeting);
message = "ni hao";
greeting += message;
System.out.println(greeting);
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Strings

String greeting, message;
greeting = "aloha";
System.out.println(greeting + " ahoy");
greeting = greeting + " salve";
System.out.println(greeting);
message = "ni hao";
greeting += message;
System.out.println(greeting);

...

aloha ahoy
aloha salve
aloha salveni hao

Note that you must put spaces explicitly where you want them.
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Strings

What’s really happening here?

System.out.println("Here is a number: " + 5);
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Strings

What’s really happening here?

System.out.println("Here is a number: " + 5);

When plus is used with at least one String, it is interpreted as concatenation, and
the other value is automatically cast to String.
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Strings

Strings have methods (something we’ll learn about in a couple weeks) which define
operations on them.

For example:

greeting.length()

Calculates the length (number of characters) in the string stored in variable
greeting.
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Strings

String greeting = "aloha and ahoy!";
int greetingLength = greeting.length();
System.out.println("\"" + greeting + "\" is " + greetingLength

+ " characters long.");

...

"aloha and ahoy!" is 15 characters long.

• Make sure you understand what we did with slashes and quotes.

• Note that spaces and punctuation are included in the count.

• Note that length() returns an int when it is called. This is its return type.
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String methods

There are methods to convert a String to all lower case or all uppercase.

String virgil = "Arma virumque cano Trojae qui primus ob oris";
String lowerCase = virgil.toLowerCase();
String upperCase = virgil.toUpperCase();

System.out.println(virgil);
System.out.println(lowerCase);
System.out.println(upperCase);

...

Arma virumque cano Trojae qui primus ob oris
arma virumque cano trojae qui primus ob oris
ARMA VIRUMQUE CANO TROJAE QUI PRIMUS OB ORIS
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String methods

Note:

String lowerCase = virgil.toLowerCase();

• The return type of toLowerCase() is String.

• The contents of the variable virgil is unchanged.
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String methods

trim() removes leading or trailing whitespace.

String message = " \n O nuntii mihi beati! ";
String trimmedMessage = message.trim();

System.out.println("<" + message + ">");
System.out.println("<" + trimmedMessage + ">");

...

<
O nuntii mihi beati! >

<O nuntii mihi beati!>
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String

A String is represented as an ordered sequence of characters indexed starting at
zero.

"dux femina facti"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d u x f e m i n a f a c t i

We’ll find that indexing from zero is true for other data structures . . .
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String

charAt(position) returns a char at a given position.

String message = "timidumque ad lumina lumen attolens";
char letter8 = message.charAt(8);
char letter16 = message.charAt(16);

System.out.println(message);
System.out.println(letter8 + " " + letter16);

...

timidumque ad lumina lumen attolens
u m
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String

substring(...) returns a String that is part of the String on which it is called.

• Given one int, it interprets it as the starting point and returns the string from there to the end.

• Given two ints, it interprets them as the starting and ending points.

String message = "Varus me meus ad suos amores";
String subMessage1 = message.substring(22);
String subMessage2 = message.substring(6, 8);

System.out.println(message);
System.out.println(subMessage1);
System.out.println(subMessage2);

...

Varus me meus ad suos amores
amores
me Later we’ll see that this is an instance of overloading a method. . .

CS 241 52



Strings

Note that the second index refers to one past the last item in the range.

0 1 2 3 4 5 6 7 8 9

q u o d c u m q u e

↑ ↑

String message = "quodcumque";
String subMessage = message.substring(4,7 );

System.out.println(message);
System.out.println(subMessage);

...

quodcumque
cum
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String

A String variable can change, but a String itself cannot (it is immutable).

String message1 = "o fortunati quorum moenia iam surgunt";
String message2 = message1;
message1 += ".";

System.out.println("message1: " + message1);
System.out.println("message2: " + message2);

...

message1: o fortunati quorum moenia iam surgunt.
message2: o fortunati quorum moenia iam surgunt
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Summary

Be able to identify the following concepts:

• Type

• int, double, and char

• Expression

• Statement

• Operator and operands

• Integer division

• Modulus

• Type cast

• Assignment shorthands and increment/decrement

• Precedence

• Associativity

• Escape sequence

• String

• Concatenation

• String methods

• Indexing from zero
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