
Computer Science 241
Test 1
Feb 16, 2005

1. Use the terms on the last page to fill in the blanks to describe the program also
on the last page (terms may be used more than once). (2 points each.)

The names a and f are examples of identifier s . a is the name of

a(n) variable and f is the name of a(n) method .

On line 1, we find the declaration of a, and the on the following line is

its initialization . The word int specifies the type

of a. As opposed to a, 5 is a(n) literal .

On line 3, “a++” is a(n) expression , as opposed to “a++;” which

is a(n) statement . One line 4, "a: " + a creates a new String by

concatenation . On line 5, f(a) is a(n) invocation of f.
Notice that f(a) has an int value, even though b should contain a double value.

A(n) automatic cast makes this work correctly.

Even though a on line 1 and a on line 9 have the same name, they are different

because they each have a different scope . Even though f on line
8 and f on line 16 have the same name, they are different because they each have a

different signatures , namely f(int) and f(int, int), respectively.

That these two things have the same name is called overloading .

1

The loop in lines 10-13 is a(n) zero-trip loop, whereas the loop

in lines 17-22 is a(n) test-in-the-middle loop.

2. The output of running this piece of code is (5 points):

a: 6

3.0

3. For each pice of code, show the value of a and i at the beginning of each iteration
of the loop and after the loop finishes. (6 points each)

int a = 7;
int i = 0;

do { iteration 1 2 end
a /= 2; --
i++; a 7 3 1

} while (a > 1); i 0 1 2

int a = 7;
int i = 0;

for(;;) { iteration 1 2 end
a /= 2; --
if (a <= 1) break; a 7 3 1
i++; i 0 1 1

}

2

4. We have seen several versions of programs that average a series of numbers
supplied by the user. Write an algorithm that allows a user to input a series of
integers (using -1 as a sentinel value to signal being finished) and computes the
range of the values, that is, the difference between the largest and smallest. You
may assume the first input is not -1. (10 points.)

- Input first number from user, store in query

- Set smallest = query

- Set largest = query

- Loop

- Input next number from user, store in query

- If query == -1, break

- If query < smallest, set smallest = query

- If query > largest, set largest = query

- Set range = largest - smallest

- Display range

3

5. Write two methods, one iterative and one recursive, to compute the sum of the
first n positive integers, that is 1 + 2 + . . .+n. (If you know the explicit formula for
the sum of an arithmetic sequence, do not use it.) (8 points each.)

Iterative version:

static int sum (int n) {

int s = 0;

for (int i = 1; i <= n; i+++)

s += i;

return s;

}

Recursive version:

static int sum (int n) {

if (n == 1)

return 1;

else

return n + sum(n-1);

}

4

6. You have used the standard Java method str.substring(int, int) that returns
a portion of a string bounded by the two given integers. Suppose that Java did not
provide such a method. Instead, write your own method using str.charAt(int). In
other words, write a body for the following method which accepts a String and two
ints, indicating an (inclusive) starting position and (exclusive) ending position and
returns an appropriate String. (Do not worry about checking for correct arguments;
that is, assume 0 ≤ start ≤ end ≤ str.length().) (12 points.)

static String homemadeSubstring(String str, int start, int end) {

String toReturn = ""; // empty string

for (int i = start; i < end; i++)

toReturn += str.charAt(i);

return toReturn;

}

5

7. Write a method which receives two integers, height and width, and draws a
box, using asterisks, that has those dimensions. For example, it would produce the
following box if height was 5 and width was:

* *

* *

* *

You may assume height and width are both at least 2. (10 points.)

static void printBox(int height, int width) {

// Make top/bottom line

String top = "";

for (int i = 0; i < width; i++)

top += "*";

// Make line for middle part

String middle = "*";

for (int i = 0; i < width - 2; i++)

middle += " ";

middle += "*";

System.out.println(top);

for (int i = 0; i < height - 2; i++)

System.out.println(middle);

System.out.println(top);

}

6

