CS 365 — Programming Language Concepts

Type correctness proofs

Apr 16, 2008

Type rules

I' - true : bool
I' - false : bool
I'Fax:T'(x)

'+ eq: bool I'kFes: T I'Fesg:7

'+ if e; then ey else eg: 7

FU{(&?l,Tl)} |_6 N
I'Efn(z)=e:m — m

I'Fey:m I'Fey:m — 1
['Fei(es) :

N /N
wWw NN
N N’ N’

Definitions

An expression e is well-typed in a type system if there exists an environment I and
type 7 such that the judgment I' - e : 7 can be proven by the type rules.

A type system is sound if well-typed programs cannot cause type errors.
An expression is closed if it has no free variables.
A program is a closed expression.

A wvalue i1s a closed abstraction or a boolean constant. We will use the variable v
to range over values.

Semantic rules

(fn(z) = e)(v) — [v/x]e

ey If v = true

if v then ey else e5 — .
e3 otherwise

e; — €}

e1(e2) — ej(e2)

eo — €4

v1(e2) — vi(ep)

e; — €

if e; then ey else e3 — if €/ then ey else e3

(10)

(11)

Claim

An expression e is stuck if it is not a value and there does not exist an ¢’ such that

e — ¢
An expression goes wrong if it evaluates to a stuck expression.

Claim: The BoolEm type system is sound. That is, well-typed BoolEm programs
cannot go wrong.

Proof Qutline.

Substitution (Lemma 1) Value Forms (Lemma 3)
l l
Type Preservation (Theorem 2) Progress (Theorem 4)
N /

Soundness (Corollary 5)

Theorems

Lemma 1. [Substitution.] /fT U{(z,7")}Fe:7and ' v: 7', then
' |v/xle: T.

Theorem 2. [Type Preservation.] /fI'Fe:7ande — €', thenT ¢e' : 7.

Lemma 3. [Value Forms.] [/fT' v : bool, then v is in the form true or false.
IfT' v : 71 — 7o, then v is in the form fn(x) = e.

Theorem 4. [Progress.] If e is a closed expression and I" - e : T, then either e
is a value or there exists an e’ such that e — ¢'.

Corollary 5. [Soundness] Well-typed programs cannot go wrong.

