
2 FINITE STATE MACHINES

Automata and Languages

1 Languages, etc.

An alphabet is a set of symbols. We won’t define the term symbol ; it’s a primitive term. The most alphabet

intuitive way to think of symbols to to make them synonymous with characters—but they could
be other things. Traditionally Σ is used to stand for an alphabet, so we could say, for example,
Σ = {a, b, c}.

A string over an alphabet is a sequence of symbols of the alphabet. We use Σ∗ to stand for the string

set of all strings over an alphabet (the idea is that ∗ means “zero or more things drawn from. . . ”).
Since symbols may be repeated and since strings may be arbitrarily long, Σ∗ is necessarily an infinite
set, unless Σ itself is empty. You are familiar with such concepts as string concatenation, reversal,
length, substring, and the empty string. (We don’t want to call the empty string ∅, because a string
is a sequence, not a set; instead we call the empty string ε. (If ε happens to be a symbol in the
alphabet, we’re in trouble.))

A language over an alphabet is a set of strings over that alphabet; alternately, a language over Σ language

is any subset of Σ∗. This may sound like an odd way to define what a language is since this means
a language can be pretty much anything. It’s used for talking about the mathematical concept of
sets of strings, but the definition works for natural languages, too. For example, the string “Je
voudrais du café” is in the language French. It’s just harder to define such languages formally. (To
stretch things further, this definition works for spoken natural languages as well as for written; the
“alphabet” in that case is the set of phonetic symbols rather than written symbols. Sign languages
fit the definition, too.)

2 Finite state machines

An automaton is any model of a machine that works on its own (i.e., it works autonomously or automaton

automatically). The idea is that the power supply or whatever causes it to act is not included in the
model.

The simplest kind of automaton is a finite state machine (FSM). It’s a machine that has a finite
number of possible states, and it transitions among them based on its input. Its input consists in
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symbols from an alphabet, given one at at time. Real-world examples—or, at least, analogies—
include parking meters and ceiling fans.

There is a standard way to draw FSMs. If we assume the fan’s states to be {O, S, M, F} for off,
slow, medium, and fast, respectively, then:

O S M F
pull pull pull

pull

Formally, a FSM is a set of states Q together with an alphabet Σ and a transition function
δ : Q× Σ → Q. The transition function takes a (current) state and an input symbol and returns a
new state. Typically there is a designated state q0 ∈ Q which is called the start or initial state. In initial state

diagrams, it is identified by an arrow from nowhere pointing to it; it’s usually placed on the leftmost
part of the diagram. Most FSM also have at least one final state, which is identified by a double final state

circle.
FSMs are used to specify (or implement, depending on how you look at it) a language. Take the

alphabet Σ = {0, 1} and the language of strings that begin with 00 and end with 11, such as 0011,
00011, 00111, 0001001010110011, etc.

0 0

0
1

0
1

0 1

The way to read this is that the left “branch” shows the entry into the system—a string must
begin with two 0’s. Then transitions happen among the three states on the right, but in order to
get to the lower state, we must have come in on a path where the last two inputs were 1’s. If we are
in that state when the input ends, we accept the string as being in the language. For this reason
the final state is also called the accept state.

This picture does not take into account what happens if erroneous input—something that forms
a string which is not in the language—is given. Either we must allow δ to be an incomplete function
(there are some state, input pairs for which there is not next state), or we say that there is also an
extra state, the “reject” state, to which all otherwise undefined pairs transition. We leave this reject
state out of the diagram to reduce clutter.

Because of this perspective, that an FSM accepts or rejects a string as being in a language, FSMs
are also called deterministic finite accepters (DFAs). (The abbreviation DFA is also sometimes deterministic finite

accepterinterpreted as standing for “deterministic finite automaton.”)
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3 Regular expressions

A regular expression is a certain way of specifying a language. Since a language is a set, it’s regular expression

important to remember that a regular expression is a description of a set. The rules for writing
regular expressions, given an alphabet Σ, are that a regular expression is one of

• ∅, which denotes the set ∅, that is, the set/language of no strings.

• ε, which denotes the set {ε}, that is, the set/language containing only the empty string.

• a, where a ∈ Σ, which denotes the set {a}, that is, the set/language containing only the string
with only the symbol a.

• r | s, where r and s are regular expressions, which denotes the set/language r ∪ s (remember
that r and s each denote a set).

• rs, where r and s are regular expressions, which denotes the set/language of strings each
composed of a string from r concatenated with a string from s; formally, {RS | R ∈ r and S ∈
s}

• r∗, where r is a regular expression, denoting the set of strings which are composed of the
concatenation of zero or more strings, each from r; formally, {R0R1 . . . Rn | n ∈ W and ∀ i, 0 ≤
i ≤ n, Ri ∈ r}.

For example, the language in the previous section is described by the regular expression 00(0|1) ∗ 11.
(Note that parentheses is also legal, used for grouping; There are also a variety of extensions to reg-
ular expressions that are popularly used to make them more concise. For example, r+ means “one
ore more occurrences of. . . ”; thus r+ is equivalent to rr∗. These are notationally convenient but do
not add to the “power” of regular expressions, which we discuss below.)

It turns out that the set of languages that can be described using FSMs is the same as the set
of languages that can be described by regular expressions (in this sense, regular expressions and
FSMs are equivalent). The proof of this is a bit long; we’ll demonstrate this intuitively by giving an
example of a language that neither can handle.

Consider the language of strings that begin with a certain number of 1’s followed by the same
number of 0’s: {10, 1100, 111000, 11110000, . . .}.

The regular expression 1 ∗ 0∗ won’t work because it also allows strings like 110. The pseudo-
regular expression 1n0n, taken to mean for all n, n instances of 1 followed by n instances of 0, would
work, but it is not a regular expression. In short, regular expressions have no way of counting; they
also have no mechanism for recursion.

The following FSM attempts to accept this language:
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However, this works only for series of 1’s and 0’s no longer than 3. To handle arbitrarily long
strings in this language, the FSM itself would to be arbitrarily big—in which case it would no longer
be a finite state machine.

In the practice of specifying programming languages, FSMs/regular expressions are powerful
enough to describe the “language” of legitimate tokens in the language (where a token is a keyword,
identifier, literal, punctuation, or comment), but not for specifying the entire programming language.

(In the C family of languages, block comments cannot be nested. The Java compiler, for example,
will reject

/* I’m commenting this code out

/* add 1 to i. */

i++;

*/

Why? If you can’t figure it out, ask Tyler.)

4 Context-free grammars

Instead, we can specify our language, like this:

S → ε

| 1 S 0

This means, “a string in our language can be either an empty string, or it can be the sequence
formed by 1 followed by another string in our language followed by 0.”

We saw this notation some weeks ago in your tree assignment. What we’ve used to specify the
language is a context-free grammar . Formally, a context-free grammar is a set of terminal symbols context-free grammar

T , a set of non-terminal symbols NT , and a set of productions P where each production has the
form X → S where X ∈ NT and S ∈ (T ∪ NT )∗, that is, the left-hand side is a non-terminal and
the right-hand side is a string of terminals and non-terminals. (The two productions X → S1 and
X → S2 may be abbreviated to X → S1 | S2.) Since the productions can be recursive, it can handle
languages that require some sort of counting. Thus context-free grammars are more powerful than
regular expressions, and they are used to specify programming languages.

The particular notation used by computer scientists is called Bakus-Naur Form, after John Bakus Bakus-Naur Form

and Peter Naur, and it is similar to (and expressively equivalent to) a notation called Chomsky

Normal Form, named after Noam Chomsky, used by linguists. Context-free grammars can capture
most of the grammatical phenomena in natural languages, for example

T = {a, any, every, loves, man, seeks, the, unicorm, woman}
NT = {NounPhrase,Noun,Quantifier ,Predicate ,TransitiveVerb,Sentence}

Sentence → NounPhrase Predicate

NounPhrase → Quantifier Noun

Predicate → TransitiveVerb NounPhrase

Noun → man | unicorm | woman
Quantifier → a | any | every | the

Verb → loves | seeks
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