
1 BACKGROUND: ANALYSIS OF ALGORITHMS

Complexity

1 Background: Analysis of Algorithms

You know from other computer science courses that we can analyze the running time complexity of
an algorithm and categorize it using “big-oh” notation. For example, if we were to sum the elements
in an array with n elements, we would initialize the sum variable once, initialize the index once, and
then iteratively add the next array item to the sum and increment our index, each time checking to
see if the index has reached n. This would entail n executions of the body of the loop and n + 1
executions of the guard. If we assume each static operation takes c0, c1, . . . units of computing time,
then we have

int sum = 0; c0

int i = 0; c1

while(i < 0) { c2 · (n + 1)
sum += a[i] c3 · n
i++ c4 · n

}

Thus the running time of the algorithm (in some unknown unit of time), as a function of the size
of the array, is

T (n) = c0 + c1 + c2 · (n + 1) + c3 · n + c4 · n

which, with a change of variables, simplifies to

T (n) = d0 + d1 · n

Since the term in n dominates and since the d1 coefficient is unknown and depends upon, among
other things, the machine on which we write the program, we say that this time function is “on the
order of” n, we say that the algorithm is O(n), and we even abuse mathematical notation so far as
to say T (n) = O(n).

We will not be analyzing algorithms (except for the one analysis we did above). Instead we will
explain carefully what we mean when we categorize algorithms and their time function into big-oh

1



2 BIG-OH CATEGORIZATION

and related categories. The first thing to note is that T (n) is a function; it is the function which
relates the size of the input to the running time of the algorithm. Furthermore, strictly speaking, it
is the function, not the algorithm, that “is” O(n). Or goal is to understand what that means, and
our tool will be that great tool which we always use to mold informal muck into mathematical rigor:
the theory of sets.

2 Big-oh categorization

The complexity class on the order of a function f is the set of functions that are asymptotically complexity class on the

orderbounded by a f scaled by some constant. Symbolically, if f : W → R
+, then

O(f) = { g : W → R
+ | ∃ N ∈ W and c ∈ R

+ such that ∀ n > N, g(n) ≤ c · f(n) }

Don’t be intimidated by all those symbols. You’ve taken calculus, and this is not much different
from what you need for understanding limits. Some examples below will illuminate this.

But first notice that O(n), for example, is technically a set. It’s a set of functions. This should
make sense, since what we’re doing with complexity classes is categorization. Moreover, even though
we write informally that T (n) = O(n) or d0+d1 ·n = O(n), what we really mean is that T (n) ∈ O(n).

We should make another comment on notation, that it is still far from perfect. We should name
our set O(〈 some function 〉). But how do we express our “some function”? In the formal definition
above, I assumed we used the function name, hence O(f). However, we traditionally write it with
the function description (or rule or body), that is O(n). This is confusing because there’s nothing
in the notation to show that n is a function, and not just a value or parameter. We have no way of
referring to just a function, not a function name or a function description.

But there does exist a notation that allows us to do this: lambda notation. In such notation,
the expression λn.(3 ·n2 + 5) would mean “the function that takes a parameter called n and returns
3 · n2 + 5.” This is exactly equivalent to anonymous functions in ML; compare with

fn n => 3 * n * n + 5

Thus it would be best to call this category O(λn.n). Unfortunately, lambda notation is not
familiar enough for this to be practical, and it’s not as easy for algebraic manipulation in practice.

Theorem 1 For all d0, d1 ∈ R, d0 + d1 · n ∈ O(n).

Proof. Pick c = d1 + 1 and N = d0. Then if n > N ,

d0 + d1 · n < n + d1 · n = (d1 + 1) · n = c · n

2

d0

(d1 + 1) · n

d0 + d1 · n

d0

Theorem 2 For all d0, d1, d2 ∈ R, d0 + d1 · n + d2 · n
2 ∈ O(n2).

Proof. Pick c = d2 + 1 and N = max(d1 + 1, d0). Then if n > N ,

d0

n
< 1 since n > d0

d0

n
+ d1 < n since n > d1 + 1

d0 + d1 · n < n2 by multiplying by n

d0 + d1 · n + d2 · n
2 < n2 + d2 · n

2 by adding d2 · n
2

= (d2 + 1) · n
= c · n

2

(d2 + 1) · n

max(d1 + 1, d0)

d0 d0 + d1 · n + d2 · n2

2



2 BIG-OH CATEGORIZATION

If these proofs look intimidating (how would one come up with that sequence of inequalities?),
notice that it’s much easier to reason our way in the reverse order from which we present things in the
proof. To derive the previous proof, start by saying “I want to find c and N so that d0+d1 ·n+d2 ·n

2 <

c · n.” Since we know (intuitively) that the n2 term is going to dominate, we have to pick a c that’s
a little bit bigger than d2. Thus c = d2 + 1 will work. Now we want to show

d0 + d1 · n + d2 · n
2 < (d2 + 1) · n

Then, using algebraic manipulation, you can (almost) isolate n to the form

d0

n
+ d1 < n

Then what remains is the insight that if n > d0, then d0

n
< 1, and thus d0

n
+ d1 < d1 + 1. So if n

is also greater than d1 + 1, we have d0

n
+ d1 < n. This helps us choose N = max(d1 + 1, d0).

Finally, since big-oh represents an upper bound, we can say

Theorem 3 For all d0, d1 ∈ R, d0 + d1 · n ∈ O(n2).

Proof. Pick c = d1 + 1 and N = max(d0, 1). Then if n > N ,

d0 + d1 · n < n + d1 · n = (d1 + 1) · n = c · n < c · n2

We know the last part of that is true only because n > N ≥ 1.

2

Corollary 1 O(n) ⊆ O(n2).

This draws heavily on Cormen et al, Introduction to Algorithms, second edition, McGraw-Hill / MIT
Press, 2001.

3


