
Graphs

A graph G = (V, E) is a pair of finite sets, a set V of vertices (singular vertex ) and a set E of pairs graph

vertexof vertices called edges . We will typically write V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} where
edgeeach ek = (vi, vj) for some vi, vj ; in that case, vi and vj are called end points of the edge ek. Graphs
end pointsare drawn so that vertices are dots and edges are line segments or curves connecting two dots.

We call the edges pairs of vertices for lack of a better term; a pair is generally considered a
two-tuple (in this case, it would be an element of V ×V ); moreover, we write edges with parentheses
and a comma, just as we would with tuples. However, we mean something slightly different. First,
tuples are ordered. Second, an edge as a pair of vertices is not unique.

An edge (vi, vj) is incident on its end points vi and vj ; we also say that it connects them. If incident

connectsvertices vi and vj are connected by an edge, they are adjacent to one another. If a vertex is adjacent
adjacentto itself, that connecting edge is called a self-loop. If two edges connect the same two vertices, then
self-loopthose edges are parallel to each other. Below left, e1 is incident on v1 and v4. e10 connects v7 and
parallelv6. v9 and v6 are adjacent. e8 is a self-loop. e4 and e5 are parallel.
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sample graph subgraph that happens to be simple

The degree deg(v) of a vertex v is the number of edges incident on the vertex, with self-loops degree
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counted twice. deg(v1) = 2, deg(v5) = 3, and deg(v2) = 4. A subgraph of a graph G = (V, E) subgraph

is a graph G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E (and, by definition of graph, for any edge
(vi, vj) ∈ E′, vi, vj ∈ V ′). A graph G = (V, E) is simple if it contains no parallel edges or self- simple

loops. The graph ({v1, v2, v3, v4, v5}, {e1, e2, e3, e4, e6}), above right, is a simple subgraph of the
graph shown.

A simple graph G = (V, E) is complete if for all vi, vj ∈ V , the edge (vi, vj) ∈ E. The subgraph complete

({v7, v8, v9}, {e11, v12, v13}) is complete. The complement of a simple graph G = (V, E) is a graph
complementG = (V, E′) where for vi, vj ∈ V , (vi, vj) ∈ E′ if (vi, vj) /∈ E; in other words, the complement has all

the same vertices and all (and only) those possible edges that are not in the original graph. The com-
plement of the subgraph ({v3, v4, v6, v7}, {e6, e7, e10}) is ({v3, v4, v6, v7}, {(v3, v7), (v7, v4), (v3, v6)},
as shown below. Recall that we have defined complete and complement only in terms of simple

graphs, so self-loops are not considered.
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A walk from vertex v to vertex w, v, w ∈ V , is a sequence alternating between vertices in V walk

and edges in E, written v0e1v1e2 . . . vn−1envn where v0 = v and vn = w and for all i, 1 ≤ i < n,
ei = (vi−1, vi). (If a graph is simple, then it is possible to omit the edges when describing the path.)
v is called the initial vertex and w is called the terminal vertex. A walk is trivial if it contains only initial

terminal

trivial

one vertex and no edges; otherwise it is nontrivial. The length of a walk is the number of edges

length

(not necessarily distinct, since an edge may appear more than once). In the graph below, some
examples of non-trivial walks are v1e1v2e4v6e9v8e11v7e10v6e8v9 with length 6, v5e14v15 with length
1, and v11e21v12e17v9e18v13e22v12e17v9e18v13e23v14 with length 7.
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A graph is connected if for all v, w ∈ V , there exists a walk in G from v to w. This graph is not connected

connected, since no walk exists from v5 or v15 to any of the other vertices. However, the subgraph
excluding v5, v15, and e14 is connected.

A path is a walk that does not contain a repeated edge. v1e1v2e4v6e9v8e11v7e10v6e8v9 is a path, path

but v11e21v12e17v9e18v13e22v12e17v9e18v13. is not. If the walk contains no repeated vertices, except
possibly the initial and terminal, then the walk is simple. v1e1v2e4v6e9v8e11v7e10v6e8v9 is not simple, simple

since v6 occurs twice. Its subpath v8e11v7e10v6e8v9 is simple.
If v = w (that is, the initial and terminal vertices are the same), then the walk is closed . A circuit closed

circuit
is a closed path. A cycle is a simple circuit. In the earlier example, v6e9v8e11v7e12v10e16v8e15v9e8v6

cycle

is a circuit, but not a cycle, since v8 is repeated. v2e4v6e8v9e17v12e7v2 is a cycle.
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Circuit Cycle

An Euler circuit of G is a circuit that contains every vertex and every edge. (Since it is a circuit, Euler circuit

this also means that an Euler circuit contains very edge exactly once. Vertices, however, may be
repeated.) A Hamiltonian cycle, which for a graph G = (V, E) is a cycle that includes every vertex Hamiltonian cycle

in V . Since it is a cycle, this means that no vertex or edge is repeated; however, not all the edges
need to be included. Here is a Hamiltonian cycle in a graph similar to the one at the beginning of
this chapter (with the disconnected subgraph removed).
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Proofs of graph theoretical propositions can get messy. They involve a lot of notation with
edges and vertices. Paths can be annoying to reason about since they are written as sequences of
subscripted v’s and e’s. To relieve some of the pain, we’ll allow graph theory proofs to be a little less
formal than the proofs in MATH/CSCI 243. Things like substitution and rules of arithmetic and
algebra may be used uncited, for example. This should allow us to focus on the core of the proof.
Consider this one:

Theorem 1 If G = (V, E) is a connected graph and for all v ∈ V , deg(v) = 2, then G is a cycle.

The important thing to think about is what is the burden of this proposition? In other words,
what do we need to show? Identifying that will be an exercise in applying the definitions listed
above, and it will give us a road map through the actual proof.

First of all, what we need to show is that G is a cycle. That means G has a cycle which happens
to be all of G. This is our first step to unravelling what needs to be shown— it’s a proof of existence.
We must show there exists a cycle in G that comprises all of G.

Now, what’s a cycle? It’s a simple circuit. Simple means it has no repeated internal vertices.
What’s a circuit? It’s a closed path. Closed means it has the same initial and terminal vertex. A
path is a walk with no repeated edges.

So, here’s our proof outline or strategy: 1. Construct a walk. 2. Show that the walk has no
repeated edges (so it’s a path) 3. Show that it has the same first and last vertex (so it’s closed—and
it’s also a circuit) 4. Show that it has no repeated internal vertices (so it’s simple—and it’s also a
cycle) 5. Show that every vertex and edge in G is this cycle.

Now, why is this proposition true? Let’s draw a picture of a connected graph, all of whose
vertices are 2.
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This theorem is almost obvious now. All we need to do is pick any vertex to begin with, and
travel out by any edge. For ever vertex we get to, we just leave by the edge other than the one we
entered.

start here

Don’t let this reasoning by example blind you to one special case:

Ready to prove?

Proof. Suppose G = (V, E) is a connected graph and for all v ∈ V , deg(v) = 2.

First suppose |V | = 1, that is, there is only one vertex, v. Since deg(v) = 2, this implies
that there is only one edge, e = (v, v). Then the cycle vev comprises the entire graph.

This looks like the beginning of a proof by induction, but actually it is a traditional division into
cases. We are merely getting a special case out of the way. We want to use the fact that there can
be no self-loops, but that is true only if there are more than one vertex.

Next suppose |V | > 1. By the exercise below, G has no self-loops.

We’ll leave that part for you.

Then construct a walk c in this manner: Pick a vertex v1 ∈ V and an edge e1 = (v1, v2).
Since deg(v1) = 2, e must exist, and since G contains no self-loops, v1 6= v2.

1

v
1

v2

e

Since deg(v2) = 2, there exists another edge, e2 = (v2, v3) ∈ E.
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Continue this process until we reach a vertex already visited, so that we can write
c = v1e1e2v3 . . . ex−1vx where vx = vi for some i, 1 ≤ i < x. We will reach such a
vertex eventually because V is finite.

Only one vertex in c is repeated, since reaching a vertex for the second time stops the
building process. Hence c is simple.

Since we never repeat a vertex (until the last), each edge chosen leads to a new vertex,
hence no edge is repeated in c, so c is a path.

We are always choosing the edge other than the one we took into a vertex, so i 6= x− 1.

Suppose i 6= 1. Since no other vertex is repeated, vi−1, vi+1, and vx−1 are distinct.
Therefore, distinct edges (vi−1, vi), (vi, vi+1), and (vx−1, vi) all exist, and so deg(vi) ≥ 3.
Since deg(vi) = 2, this is a contradiction. Hence i = 1. Moreover, v1 = vx and c is
closed.

As a closed, simple path, c is a cycle.

Suppose that a vertex v ∈ V is not in c, and let v′ be any vertex in c. Since G is
connected, there must be a walk, c′ from v to v′, and let edge e′ be the first edge in c′

(starting from v′) that is not in c, and let v′′ be an endpoint in c′ in c. Since two edges
incident on v′′ occur in c, accounting for e′ means that deg(v′′) ≥ 3. Since deg(vi) = 2,
this is a contradiction. Hence there is no vertex not in c.

Suppose that an edge e ∈ E is not in c, and let v be an endpoint of e. Since v is in the
cycle, there exist distinct edges e1 and e2 in c that are incident on v, implying deg(v) ≥ 3.
Since deg(v) = 2, this is a contradiction. Hence there is no edge not in c.

Therefore, c is a cycle that comprises the entire graph, and G is a cycle. 2

Here’s a summary of the terms:

simple (of a graph) no self loops or parallel edges
walk an alternating sequence of vertices and edges, starting and ending on a vertex
path a walk without a repeated edge
simple (of a path) no repeated vertex (except possibly the initial and terminal being the same)
closed having the same vertex for the initial and terminal vertex
circuit a closed path
cycle a simple circuit
Euler circuit a circuit containing every edge in the graph
Hamiltonian cycle a cycle containing every vertex in the graph

Exercise. Show that if G is connected, for all v ∈ V, deg(v) = 2, and |V | > 1, then G has no
self-loops.
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