
1 AN EXAMPLE, U(N)

Groups, part 2

1 An example, U(n)

Let U(n) be the set of all positive integers less than n and relatively prime to n. For examples,
U(5) = {1, 2, 3, 4} and U(8) = {1, 3, 5, 7}. (Notice that we consider 1 to be relatively prime to
anything.)

Theorem 1 For n ∈ Z+, U(n) with multiplication modulo n is a group.

Let’s take U(8).

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Looks closed. Everything has an inverse (itself in this case, but not always; try U(5) on your
own). 1’s the identity. We already know multiplication is associative. Let’s prove it.

Proof. As mentioned already, we know that multiplication is associative and that 1 will
be the identity for any kind of multiplication. We need to prove closure and inverses.

Suppose a, b ∈ U(n). The quotient-remainder theorem tells us that there exist q, r ∈ Z+

such that a · b = n · q + r, where 0 < r ≤ n. The definition of modular arithmetic says
that a · b mod n = r. What we need to show is that r is relatively prime with n.

Suppose r is not relatively prime with n. That means there exists an x ∈ Z+ such that
x is a common factor of r and n (ie, x|r and x|n). That would mean x|(n · q + r), and
hence x|(a · b). Then x is a factor of either a or b, and thus either a or b is not relatively
prime with n; either a /∈ U(n) or b /∈ U(n). Contradiction. Hence r is relatively prime
with n, and multiplication mod n is closed on U(n).

Showing inverses is a bit more complicated. First, a lemma:

1
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Lemma 1 If a, b, c ∈ U(n) and b 6= c, then a ∗ b 6= a ∗ c.

Proof (of lemma). Suppose a, b, c ∈ U(n) and b 6= c. (Notice that it could
be that a = b or a = c.)
Suppose further that (a · b) mod n = (a · c) mod n. Then there exist q1, q2,
and r such that a · b = q1 · n + r and a · c = q2 · n + r.
Say (without loss of generality) b is the greater of the two, i.e., b > c. Then
we can subtract equations

a · b = q1 · n + r
− a · c = q2 · n + r

a · (b − c) = (q1 − q2) · n

Since a is relatively prime with n, a can’t divide n, so it must divide q1 − q2.
Now, solving for b:

b =
q1 − q2

a
· n + c

Since we said a|(q1− q2), then q1−q2
a > 1, and so b > n. This is a contradiction

because we assumed b ∈ U(n). 2

What this lemma says is that given a ∈ U(n), every element in U(n) must take a to
something different. This further means that for every element in U(n), something must
take a to it, simply because otherwise we’d run out of elements (technically, this uses
what’s called “The Pigeonhole Principle”). This has to include 1, the identity, therefore
a’s inverse must exist in U(n).

This accounts for all the requirements for U(n) to be a group. 2

If you’re frustrated by that proof, especially the part about inverses, it might be because we
didn’t actually tell how to find the inverse of a given a, we just said it had to exist. (In CS 243
terms, it’s like proving there exists a unicorn by showing it’s impossible for a unicorn not to exist,
as opposed to brining a unicorn into the room.) There are other proofs of this theorem out there
(mostly using stuff we haven’t covered), but I don’t know of a constructive one.

2 Cyclic subgroups

Suppose A with ∗ is a group, and a inA. Let 〈a〉 be the set {an | n ∈ Z} For example, if the group
is Q with addition and a = 1

2 , then 〈 1
2 〉 is

. . . 1
2

−2 = −1, 1
2

−1 = − 1
2 , 1

2

0 = 0, 1
2

1 = 1
2 , 1

2

2 = 1, 1
2

3 = 3
2 , 1

2

4 = 2 . . .

If it so happens that A = 〈a〉 for some a, then A is called a cyclic group and a is called the cyclic group

generator of A. For example, 1 is the generator of Z with addition. It’s possible that a cyclic group
generatorhas more than one generator.

3 Permutations

In combinatorics, we think of a permutation of a set as simply a (re)arrangement of the elements in
the set. It’s like a way to shuffle the cards. Thus, for the set {1, 2, 3, 4}, the permutations are

1, 2, 3, 4 1, 2, 4, 3 1, 3, 2, 4 1, 3, 4, 2 1, 4, 3, 2 1, 4, 2, 3
2, 1, 3, 4 2, 1, 4, 3 2, 3, 1, 4 2, 3, 4, 1 2, 4, 1, 3 2, 4, 3, 1
3, 1, 2, 4 3, 1, 4, 2 3, 2, 1, 4 3, 2, 4, 1 3, 4, 1, 2 3, 4, 2, 1
4, 1, 2, 3 4, 1, 3, 2 4, 2, 1, 3 4, 2, 3, 1 4, 3, 1, 2 4, 3, 2, 1

2



3 PERMUTATIONS

But we’re going to forge a new definition. We’ll say that a permutation of a set A is a one-to-one permutation

correspondence from A to A.
What fellowship does that definition have with our intuitive understanding of permutations?

Well, consider an example. Let’s define the following one-to-one correspondence, α, on {1, 2, 3, 4}:

x α(x)
1 2
2 1
3 3
4 4

Looks just like one of the “permutations” we listed above. Moreover, if we extend our notion of
α so that it can be applied to lists of elements of A (sort of like the image of a set under a function,
except the elements or ordered; more like the map function in ML), then

α([1, 2, 3, 4]) = [2, 1, 3, 4]

There’s a standard matrix-looking way to represent a permutation. The one above (α) would be
written [

1 2 3 4
2 1 3 4

]
Read that by finding the input on top and the corresponding output on the bottom: 1 maps

to 2, 2 maps to 1, 3 maps to 3, 4 maps to 4. We also have a ready binary operation to apply to
permutations: function composition. Let β be the permutation listed originally as 3, 4, 1, 2. Then

α ◦ β =
[

1 2 3 4
2 1 3 4

]
◦

[
1 2 3 4
3 4 1 2

]
=

[
1 2 3 4
3 4 2 1

]
To get your mind around this, you need to read from right to left. What is α ◦ β(1)? Well, we

feed 1 into β , which gets 3; feed 3 into α, and we still get 3. Hence α ◦ β(1) = 3.
A set of permutations that forms a group under function composition is called a permutation

group. We’ve already seen one: Think about the rotations and symmetries of an equilateral triangle– permutation group

they’re just permutations of ways to list the corners, say, going clockwise from the top.
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