Groups, part 2

1 An example, $\mathcal{U}(n)$

Let $\mathcal{U}(n)$ be the set of all positive integers less than n and relatively prime to n. For examples, $\mathcal{U}(5)=\{1,2,3,4\}$ and $\mathcal{U}(8)=\{1,3,5,7\}$. (Notice that we consider 1 to be relatively prime to anything.)

Theorem 1 For $n \in \mathbb{Z}^{+}, \mathcal{U}(n)$ with multiplication modulo n is a group.
Let's take $\mathcal{U}(8)$.

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Looks closed. Everything has an inverse (itself in this case, but not always; try $\mathcal{U}(5)$ on your own). 1's the identity. We already know multiplication is associative. Let's prove it.

Proof. As mentioned already, we know that multiplication is associative and that 1 will be the identity for any kind of multiplication. We need to prove closure and inverses.
Suppose $a, b \in \mathcal{U}(n)$. The quotient-remainder theorem tells us that there exist $q, r \in \mathbb{Z}^{+}$ such that $a \cdot b=n \cdot q+r$, where $0<r \leq n$. The definition of modular arithmetic says that $a \cdot b \bmod n=r$. What we need to show is that r is relatively prime with n.
Suppose r is not relatively prime with n. That means there exists an $x \in Z^{+}$such that x is a common factor of r and n (ie, $x \mid r$ and $x \mid n$). That would mean $x \mid(n \cdot q+r)$, and hence $x \mid(a \cdot b)$. Then x is a factor of either a or b, and thus either a or b is not relatively prime with n; either $a \notin \mathcal{U}(n)$ or $b \notin \mathcal{U}(n)$. Contradiction. Hence r is relatively prime with n, and multiplication $\bmod n$ is closed on $\mathcal{U}(n)$.
Showing inverses is a bit more complicated. First, a lemma:

Lemma 1 If $a, b, c \in \mathcal{U}(n)$ and $b \neq c$, then $a * b \neq a * c$.
Proof (of lemma). Suppose $a, b, c \in \mathcal{U}(n)$ and $b \neq c$. (Notice that it could be that $a=b$ or $a=c$.)
Suppose further that $(a \cdot b) \bmod n=(a \cdot c) \bmod n$. Then there exist q_{1}, q_{2}, and r such that $a \cdot b=q_{1} \cdot n+r$ and $a \cdot c=q_{2} \cdot n+r$.
Say (without loss of generality) b is the greater of the two, i.e., $b>c$. Then we can subtract equations

$$
\begin{aligned}
a \cdot b & =q_{1} \cdot n+r \\
a \cdot c & =q_{2} \cdot n+r \\
-\quad a \cdot(b-c) & =\left(q_{1}-q_{2}\right) \cdot n
\end{aligned}
$$

Since a is relatively prime with n, a can't divide n, so it must divide $q_{1}-q_{2}$. Now, solving for b :

$$
b=\frac{q_{1}-q_{2}}{a} \cdot n+c
$$

Since we said $a \mid\left(q_{1}-q_{2}\right)$, then $\frac{q_{1}-q_{2}}{a}>1$, and so $b>n$. This is a contradiction because we assumed $b \in \mathcal{U}(n)$.

What this lemma says is that given $a \in \mathcal{U}(n)$, every element in $\mathcal{U}(n)$ must take a to something different. This further means that for every element in $\mathcal{U}(n)$, something must take a to it, simply because otherwise we'd run out of elements (technically, this uses what's called "The Pigeonhole Principle"). This has to include 1, the identity, therefore a 's inverse must exist in $\mathcal{U}(n)$.
This accounts for all the requirements for $\mathcal{U}(n)$ to be a group.
If you're frustrated by that proof, especially the part about inverses, it might be because we didn't actually tell how to find the inverse of a given a, we just said it had to exist. (In CS 243 terms, it's like proving there exists a unicorn by showing it's impossible for a unicorn not to exist, as opposed to brining a unicorn into the room.) There are other proofs of this theorem out there (mostly using stuff we haven't covered), but I don't know of a constructive one.

2 Cyclic subgroups

Suppose A with $*$ is a group, and $a \operatorname{in} A$. Let $\langle a\rangle$ be the set $\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ For example, if the group is \mathbb{Q} with addition and $a=\frac{1}{2}$, then $\left\langle\frac{1}{2}\right\rangle$ is

$$
\ldots \quad \frac{1}{2}^{-2}=-1, \quad \frac{1}{2}^{-1}=-\frac{1}{2}, \quad \frac{1}{2}^{0}=0, \quad \frac{1}{2}^{1}=\frac{1}{2}, \quad \frac{1}{2}^{2}=1, \frac{1}{2}^{3}=\frac{3}{2}, \quad \frac{1}{2}^{4}=2 \quad \ldots
$$

If it so happens that $A=\langle a\rangle$ for some a, then A is called a cyclic group and a is called the generator of A. For example, 1 is the generator of \mathbb{Z} with addition. It's possible that a cyclic group has more than one generator.

3 Permutations

In combinatorics, we think of a permutation of a set as simply a (re)arrangement of the elements in the set. It's like a way to shuffle the cards. Thus, for the set $\{1,2,3,4\}$, the permutations are

$1,2,3,4$	$1,2,4,3$	$1,3,2,4$	$1,3,4,2$	$1,4,3,2$	$1,4,2,3$
$2,1,3,4$	$2,1,4,3$	$2,3,1,4$	$2,3,4,1$	$2,4,1,3$	$2,4,3,1$
$3,1,2,4$	$3,1,4,2$	$3,2,1,4$	$3,2,4,1$	$3,4,1,2$	$3,4,2,1$
$4,1,2,3$	$4,1,3,2$	$4,2,1,3$	$4,2,3,1$	$4,3,1,2$	$4,3,2,1$

But we're going to forge a new definition. We'll say that a permutation of a set A is a one-to-one correspondence from A to A.

What fellowship does that definition have with our intuitive understanding of permutations? Well, consider an example. Let's define the following one-to-one correspondence, α, on $\{1,2,3,4\}$:

x	$\alpha(x)$
1	2
2	1
3	3
4	4

Looks just like one of the "permutations" we listed above. Moreover, if we extend our notion of α so that it can be applied to lists of elements of A (sort of like the image of a set under a function, except the elements or ordered; more like the map function in ML), then

$$
\alpha([1,2,3,4])=[2,1,3,4]
$$

There's a standard matrix-looking way to represent a permutation. The one above (α) would be written

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right]
$$

Read that by finding the input on top and the corresponding output on the bottom: 1 maps to 2,2 maps to 1,3 maps to 3,4 maps to 4 . We also have a ready binary operation to apply to permutations: function composition. Let β be the permutation listed originally as $3,4,1,2$. Then

$$
\alpha \circ \beta=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right] \circ\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right]
$$

To get your mind around this, you need to read from right to left. What is $\alpha \circ \beta(1)$? Well, we feed 1 into β, which gets 3 ; feed 3 into α, and we still get 3 . Hence $\alpha \circ \beta(1)=3$.

A set of permutations that forms a group under function composition is called a permutation group. We've already seen one: Think about the rotations and symmetries of an equilateral trianglethey're just permutations of ways to list the corners, say, going clockwise from the top.

