Lattices

1 Review: Partial orders

A partial order relation is a relation R on a set X that is reflexive, transitive, and antisymmetric. A set X on which a partial order is defined is called a partially ordered set or a poset. For examples,
partial order relation poset the set $\mathscr{P}(\{1,2,3\})$, that is, the powerset of $\{1,2,3\}$ or the set of all subsets of $\{1,2,3\}$ is a poset with relation \subseteq; and the set of positive divisors of 30 is a poset with relation | (divides); the set of water bodies in and around biblical Israel is a poset with the relation isWestOf.

The idea of the ordering being only partial is because not every pair of elements in the set is organized by it. In this case, for example, $\{1,2\}$ and $\{1,3\}$ are not comparable. We say that for a partial order relation \preceq on a set $A, a, b \in A$ are comparable if $a \preceq b$ or $b \preceq a$. 6 and 30 are
comparable comparable for $\mid(6 \mid 30)$, but 6 and 15 are not comparable. For \subseteq, \emptyset is comparable to everything; in fact, it is a subset of everything. Arnon is not comparable to everything, but everything it is comparable with is west of it. These last observations lead us to say that if \preceq is a partial order relation on A, then $a \in A$ is

- maximal if $\forall b \in A, b \preceq a$ or b and a are not comparable.
maximal
- minimal if $\forall b \in A, a \preceq b$ or b and a are not comparable.
- greatest if $\forall b \in A, b \preceq a$.
greatest
- least if $\forall b \in A, a \preceq b$
least
The graphs of partial orders become very cluttered. Instead, we use a pared down version of a graph called a Hasse diagram, after German mathematician Helmut Hasse. It strips out redundant information. To transform the graph of a partial order relation into a Hasse diagram, first draw it so that all the arrows (except for self-loops) are pointing up. Antisymmetry makes this possible. Then, since the arrangement on the page informs us what direction the arrows are going, the arrowheads themselves are redundant and can be erased. Finally, since we know that the relation is transitive and reflexive, we can remove self-loops and short-cuts.

2 Lattices defined

Suppose A is a poset with relation \preceq. Then a is an upper bound of a subset $B \subseteq A$ if for all $b \in B$, $b \preceq a$. Furthermore, a is an least upper bound (LUB) of a subset $B \subseteq A$ if for all upper bounds c of $B, a \preceq c$. Similarly we can define lower bound and greatest lower bound (GLB).

A poset A with relation \preceq is a lattice if for every pair of elements (or every subset with cardinality 2) has a LUB and and GLB. Suppose A is a lattice and $a, b \in A$. Then we define the join operator \vee and the meet operator \wedge to be the LUB and GLB, respectively, of a and b.
$\mathscr{P}(\{1,2,3\})$ with \subseteq is a lattice; here $\vee=\cup$ and $\wedge=\cap$. The set of divisors of 30 with \mid is a lattice; here \vee is the least common multiple and \wedge is the greatest common divisor. The set of water bodies of Israel is not a lattice since Arnon and Jabbok have no LUB.

If A with \preceq is a lattice, then $S \in A$ is called a sublattice of A if for all $a, b \in S, a \vee b \in S$ and Hasse diagram
 $a \wedge b \in S$. Notice that this basically means any subset of A that is itself a lattice. $\mathscr{P}(\{1,2\})=$ $\{\{1,2\},\{1\},\{2\}, \emptyset\}$ is a sublattice of $\mathscr{P}(\{1,2,3\})$. The set $\{1,3,5,15\}$, that is, the positive divisors of 15 , is a sublattice of the set of positive divisors of 30 .

3 Lattice properties and results

Here are a variety of results about lattices, some proof sketches.
Theorem 1 If A is a set, then $\mathscr{P}(A)$ with \subseteq is a lattice.
Proof sketch. First, we need to show that it's a poset. It's pretty clear that \subseteq is transitive, reflexive, and antisymmetric.
Next suppose $B, C \in \mathscr{P}(A)$, that is, $B \subseteq A$ and $C \subseteq A$. Then $B \cup C$ is an upper bound for B and C (since $B \subseteq B \cup C$ and $C \subseteq B \cup C$). Now suppose $D \in \mathscr{P}(A)$ is an upper bound for C and B, in other words $B \subseteq D$ and $C \subseteq D$. Suppose $x \in B \cup C$. Then by definition of union, $x \in B$ or $x \in C$; either way, $x \in D$. Hence by definition of subset, $B \cup C \subseteq D$. Therefore $B \cup C$ is the LUB for B and C.

Similarly we can show that B and C have a GLB, and that shows that this is a lattice.

Theorem 2 Let D_{n} be the set of positive divisors of $n \in \mathbb{N} . D_{n}$ is a lattice with \mid.
Try to prove this yourself.
Theorem 3 If A is a lattice with \preceq, then for all $a, b, c \in A$,
a. $\quad a \vee b=b$ iff $a \preceq b$
b. $\quad a \wedge b=a$ iff $a \preceq b$
c. $\quad a \wedge b=a$ iff $a \vee b=\preceq b$

Proof. (a) (\Rightarrow) Suppose $a \vee b=b$. That means b is the LUB of b. By definition of LUB, $a \preceq b$.
(Leftarrow) Suppose $a \preceq b$. Since \preceq is reflexive, $b \preceq b$, so b is an upper bound for a and b. Now suppose c is an upper bound for a and b, that is $a \preceq c$ and $b \preceq c$. The fact that $b \preceq c$ is enough to show that b is the LUB. Hence $a \vee b=b$.

Try (b) and (c) on your own.
Theorem 4 If A is a lattice, then the operators \vee and \wedge are idempotent (ie, $a \vee a=a$), commutative, and associative.

Proof avoidance. Pretty trivial in the definitions of \vee and \wedge.
A lattice A is distributive if for all $a, b, c \in A$,

$$
a \vee(b \wedge c)=(a \wedge b) \vee(a \wedge c) a \wedge(b \vee c)=(a \vee b) \wedge(a \vee c)
$$

Theorem 5 If A is a set, the lattice $\mathscr{P}(A)$ with \subseteq is distributive.
Proof. \cup and \cap are distributive, see Exercise 4 of Chapter 11 (2006: pg 81; 2007: pg 91).

