
1 REVIEW: PARTIAL ORDERS

Lattices

1 Review: Partial orders

A partial order relation is a relation R on a set X that is reflexive, transitive, and antisymmetric. A partial order relation

set X on which a partial order is defined is called a partially ordered set or a poset . For examples, poset

the set P({1, 2, 3}), that is, the powerset of {1, 2, 3} or the set of all subsets of {1, 2, 3} is a poset
with relation ⊆; and the set of positive divisors of 30 is a poset with relation | (divides); the set of
water bodies in and around biblical Israel is a poset with the relation isWestOf.
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The idea of the ordering being only partial is because not every pair of elements in the set is
organized by it. In this case, for example, {1, 2} and {1, 3} are not comparable. We say that for
a partial order relation � on a set A, a, b ∈ A are comparable if a � b or b � a. 6 and 30 are comparable

comparable for | (6|30), but 6 and 15 are not comparable. For ⊆, ∅ is comparable to everything;
in fact, it is a subset of everything. Arnon is not comparable to everything, but everything it is
comparable with is west of it. These last observations lead us to say that if � is a partial order
relation on A, then a ∈ A is

• maximal if ∀ b ∈ A, b � a or b and a are not comparable. maximal

• minimal if ∀ b ∈ A, a � b or b and a are not comparable. minimal
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• greatest if ∀ b ∈ A, b � a. greatest

• least if ∀ b ∈ A, a � b least

The graphs of partial orders become very cluttered. Instead, we use a pared down version of a
graph called a Hasse diagram, after German mathematician Helmut Hasse. It strips out redundant Hasse diagram

information. To transform the graph of a partial order relation into a Hasse diagram, first draw it so
that all the arrows (except for self-loops) are pointing up. Antisymmetry makes this possible. Then,
since the arrangement on the page informs us what direction the arrows are going, the arrowheads
themselves are redundant and can be erased. Finally, since we know that the relation is transitive
and reflexive, we can remove self-loops and short-cuts.
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2 Lattices defined

Suppose A is a poset with relation �. Then a is an upper bound of a subset B ⊆ A if for all b ∈ B, upper bound

b � a. Furthermore, a is an least upper bound (LUB) of a subset B ⊆ A if for all upper bounds c of
least upper bound

(LUB)
B, a � c. Similarly we can define lower bound and greatest lower bound (GLB).

lower bound

greatest lower bound
(GLB)

A poset A with relation � is a lattice if for every pair of elements (or every subset with cardinality

lattice

2) has a LUB and and GLB. Suppose A is a lattice and a, b ∈ A. Then we define the join operator
∨ and the meet operator ∧ to be the LUB and GLB, respectively, of a and b.

P({1, 2, 3}) with ⊆ is a lattice; here ∨ = ∪ and ∧ = ∩. The set of divisors of 30 with | is a
lattice; here ∨ is the least common multiple and ∧ is the greatest common divisor. The set of water
bodies of Israel is not a lattice since Arnon and Jabbok have no LUB.

If A with � is a lattice, then S ∈ A is called a sublattice of A if for all a, b ∈ S, a ∨ b ∈ S and

sublattice
a ∧ b ∈ S. Notice that this basically means any subset of A that is itself a lattice. P({1, 2}) =
{{1, 2}, {1}, {2}, ∅} is a sublattice of P({1, 2, 3}). The set {1, 3, 5, 15}, that is, the positive divisors
of 15, is a sublattice of the set of positive divisors of 30.

3 Lattice properties and results

Here are a variety of results about lattices, some proof sketches.

Theorem 1 If A is a set, then P(A) with ⊆ is a lattice.

Proof sketch. First, we need to show that it’s a poset. It’s pretty clear that ⊆ is
transitive, reflexive, and antisymmetric.

Next suppose B, C ∈ P(A), that is, B ⊆ A and C ⊆ A. Then B ∪C is an upper bound
for B and C (since B ⊆ B ∪ C and C ⊆ B ∪ C). Now suppose D ∈ P(A) is an upper
bound for C and B, in other words B ⊆ D and C ⊆ D. Suppose x ∈ B ∪ C. Then by
definition of union, x ∈ B or x ∈ C; either way, x ∈ D. Hence by definition of subset,
B ∪ C ⊆ D. Therefore B ∪ C is the LUB for B and C.
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Similarly we can show that B and C have a GLB, and that shows that this is a lattice.
2

Theorem 2 Let Dn be the set of positive divisors of n ∈ N. Dn is a lattice with |.

Try to prove this yourself.

Theorem 3 If A is a lattice with �, then for all a, b, c ∈ A,
a. a ∨ b = b iff a � b

b. a ∧ b = a iff a � b

c. a ∧ b = a iff a ∨ b =� b

Proof. (a) (⇒) Suppose a∨ b = b. That means b is the LUB of b. By definition of LUB,
a � b.

(Leftarrow) Suppose a � b. Since � is reflexive, b � b, so b is an upper bound for a and
b. Now suppose c is an upper bound for a and b, that is a � c and b � c. The fact that
b � c is enough to show that b is the LUB. Hence a ∨ b = b.

Try (b) and (c) on your own. 2

Theorem 4 If A is a lattice, then the operators ∨ and ∧ are idempotent (ie, a∨a = a), commutative,
and associative.

Proof avoidance. Pretty trivial in the definitions of ∨ and ∧. 2

A lattice A is distributive if for all a, b, c ∈ A, distributive

a ∨ (b ∧ c) = (a ∧ b) ∨ (a ∧ c)a ∧ (b ∨ c) = (a ∨ b) ∧ (a ∨ c)

Theorem 5 If A is a set, the lattice P(A) with ⊆ is distributive.

Proof. ∪ and ∩ are distributive, see Exercise 4 of Chapter 11 (2006: pg 81; 2007: pg
91). 2
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