
CS 335 — Software Development

Refactoring

Feb 22, 2010

Material adapted from Martin Fowler, Refactoring.

CS 335 1

What is refactoring?

Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes the chances
of introducing bugs. In essence when you refactor you are improving the
design of the code after it has been written. [Fowler, pg xvi, emphasis added]

• Preserve interface and behavior (contract)

• Preserve correctness

• Improve design

• Improve performance

Behavior vs. performance

CS 335 2

Principles of refactoring

When you find you have to add a feature to a program, and the program’s
code is not structured in a convenient way to add the feature, first refactor
the program to make it easy to add the feature, then add the feature. [Folwer,
pg 7]

Before you start refactoring, check that you have a solid suite of tests. These
tests must be self-checking [Fowler, pg 8]

CS 335 3

Principles of refactoring

Refactoring changes the programs in small steps. If you make a mistake, it is
easy to find the bug. [Fowler, pg 13]

When should you refactor?

• Three strikes and you refactor.

The first time you do something, you just do it. The second time you do something similar, you wince at the
duplication, but you do the duplicate thing anyway. The third time you do something similar, you refactor.

• Refactor when you add functionality.

• Refactor when you need to fix a bug.

• Refactor as you do a code review. [Fowler, 58-59]

CS 335 4

Bad smells in code

Precise criteria difficult. Instead, look for bad smells.

If it stinks, change it.

CS 335 5

Bad smells in code

Duplicated code

• Same expression in two methods of the same class.

• Same expression in two sibling subclasses

• Duplicated code in two unrelated classes

Use Extract Method, Pull Up Method, and Extract class.

CS 335 6

Bad smells in code

Long method

[O-O] programs that live best and longest are those with short methods. [To
novices, it seems like] no computation ever takes place, that [O-O] programs
are endless sequences of delegation. . . . however, you learn just how valuable
all those little methods are.

. . . the longer a procedure is, the more difficult it is to understand. . . . be
much more aggressive about decomposing methods. A heuristic we follow is
that whenever we feel the need to comment something, we write a method
instead. [Fowler, 76-77]

Use Extract Method, Form Template Method and others.

CS 335 7

Bad smells in code

Large class

When a class is trying to do too much, it often shows up as too many instance
variables. When a class has too many instance variables, duplicated code
cannot be far behind.

A class with too much code is prime breeding ground for duplicated code,
chaos, and death. [Fowler, pg 78]

Use Extract Class and Extract Subclass.

CS 335 8

Bad smells in code

Long parameter list

In our early programming days were were taught to pass in as parameters
everything needed by a routine. [T]he alternative was global data, and global
data is evil and usually painful. Objects change this situation because if you
don’t have something you need, you can always ask another object to get it
for you.

[L]ong parameter lists are hard to understand because they become inconsis-
tent and difficult to use and because you are forever changing them as you
need more data. [Fowler, 78-79]

Use Replace Parameter with Method and Preserve Whole Object.

CS 335 9

Bad smells in code

Divergent change and Shotgun surgery

When we make a change, we want to be able to jump to a single clear point
in the system and make the change.

Divergent change occurs when one class is commonly changed in different
ways for different reasons . . . you likely have a situation where two objects
are better than one.

Shotgun surgery is similar but opposite—when every time you make a change,
you have to make a lot of little changes to a lot of different classes. [Fowler,
79-80]

Use Extract Class; Move Method and Inline Class

CS 335 10

Bad smells in code

Feature envy

Objects are a technique to package data with the processes used on that
data. A classic smell is a method more interested in a class other than the
one it is in The most common focus of the envy is the data.

The heuristic we use is to determine which class has most of the data and put
the method with that data. . . Strategy and Visitor [break this rule]. [Fowler,
80]

Use Move Method and Extract Method.

CS 335 11

Bad smells in code

Data clumps

Data items tend to be like children; they enjoy hanging around in groups
together. [Such groups] ought to be made into their own object. The
immediate benefit is that you can shrink a lot of parameter lists. [Fowler, 81]

Use Extract Class.

CS 335 12

Bad smells in code

Primitive obsession

People new to objects usually are reluctant to use small objects for small
tasks, such as money classes, telephone numbers, ZIP codes. . .

Use Replace Data Value with Object

CS 335 13

Bad smells in code

Switch statements

• Hallmark of OO: lack of switch statements

• Problem: duplication; many clauses in scattered locations need change

• When you see a switch statement, replace with polymorphism

Use Extract Method and Replace Conditional with Polymorphism.

CS 335 14

Bad smells in code

Comments

[C]omments often are used as a deodorant. [L]ook at thickly commented
code and notice that the comments are there because the code is bad.

Comments lead us to bad code that has all the other bad smells. Our first
action is to remove the bad smells by refactoring. When we’re finished, we
often find that the comments are superfluous.

When you feel the need to write a comment, first try to refactor the code so
that any comment becomes superfluous.

CS 335 15

Bad smells in code

Inappropriate intimacy.

Sometimes classes become far too intimate and spend too much time delving
in each others’ private parts. Over intimate classes need to be broken up as
lovers were in ancient days. If classes do have common interests, put the
commonality in a safe place and make honest classes of them, or let another
class act as go-between.

Inheritance often can lead to overintimacy. Subclasses are always going to
know more about their parents than their parents would like them to know.
If it’s time to leave home, replace inheritance with delegation.

CS 335 16

Bad smells in code

Parallel inheritance hierarchies. Shotgun surgery at the class level. Compare
Abstract Factory, Bridge, Decorator. . .

Lazy class. A class that isn’t doing enough to pay for itself should be eliminated.

Speculative generality. “I think I’ll need it in the future.” Are abstract classes
doing much? Are the only users of a method the test cases?

Temporary field. Some classes have instance variables set only under certain
circumstances.

CS 335 17

Bad smells in code

Message chains. Long line of “get this” methods; client is coupled to the structure
of navigation.

Middle man. Encapsulation leads to delegation, which is fine; if half a class’s
methods are delegating to another class, it has gone too far.

Alternative classes with different interfaces. Move behavior to classes until the
protocols are the same.

CS 335 18

Bad smells in code

Incomplete library class. Reuse is overrated; builders of library classes are rarely
omniscient; use selectively.

Data class. Classes that have fields, getters, and setter; data classes are like
children. They are ok as a starting point, but to participate as a grownup object,
they need to take some responsibility.

Refused bequest. What if subclasses don’t want or need what they are given?
The hierarchy is wrong (maybe).

CS 335 19

Refactorings

Plain (obvious) examples

• Pull up, push down, or move a field or method (inter-class)

• Replace conditional with polymorphism (intra-method)

• Replace temporary with query / inline temporary (intra-method)

• Replace magic number with symbolic constant (intra-method)

CS 335 20

Intra method

• Consolidate duplicate conditional fragments (obvious)

• Replace nested conditional with guard clauses (obvious)

• Replace conditional with polymorphism (obvious)

• Introduce assertion (obvious)

• Replace error code with exception, replace exception with test (obvious)

• Decompose conditional (standard)

• Introduce explaining variable (standard)

CS 335 21

Inter-method / intra-class

• Add parameter (obvious)

• Encapsulate downcast (slick)

• Introduce parameter object (slick)

• Duplicate observed data (artful)

• Introduce null object (artful)

• Encapsulate collection (artful)

CS 335 22

Type code (inter-method / intra-class)

• Replace type code with class (standard)

• Replace type code with subclasses (standard)

• Replace type code with state/strategy (slick)

CS 335 23

Inter class

• Collapse hierarchy (standard)

• Extract interface/subclass/superclass (standard)

• Form template method (slick)

• Extract class / inline class (slick)

• Interchange bidirectional and unidirectional association (slick)

CS 335 24

Dealing with legacy code

• Introduce foreign method (inter-method, standard)

• Introduce local extension (inter-class, slick)

CS 335 25

Class hierarchy (inter-class)

• Replace inheritance with delegation, and vice versa (slick)

• Tease apart inheritance (artful)

CS 335 26

