
CHAPTER 5. SELF REFERENCE 5.1. PEANO NUMBERS

5.1 Peano numbers

Italian mathematician Giuseppe Peano introduced a way of reasoning about whole numbers that
includes the following axioms:

Axiom 7 There exists a whole number 0.

Axiom 8 Every whole number n has a successor� succ n. successor

Axiom 9 No whole number has 0 as its successor.

Axiom 10 If a� b ∈ W� then a = b iff succ a = succ b.

If we interpret successor to mean “one more than,” these axioms allow us to define whole numbers
recursively (called Peano numbers); a whole number is Peano numbers

• zero, or

• one more than another whole number.

As with the fun form for declaring functions, the datatype form may refer to the type being
defined.

- datatype wholeNumber = Zero | OnePlus of wholeNumber;

When we wrote self-referential functions or algorithms, they were defined as processes which
contained smaller versions of themselves. They were recursive verbs. A self-referential datatype is a
recursive noun. The recursive part establishes a pattern for generating every possible whole number.
For example,

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of

3, which is a whole number because it is the successor of
2, which is a whole number because it is the successor of

1, which is a whole number because it is the successor of
0, which is a whole number by Axiom 7.

In ML,

- val five = OnePlus(OnePlus(OnePlus(OnePlus(OnePlus(Zero)))));

val five = OnePlus (OnePlus (OnePlus (OnePlus (OnePlus Zero)))) : wholeNumber

- val six = OnePlus(five);

val six = OnePlus (OnePlus (OnePlus (OnePlus (OnePlus (OnePlus Zero))))) : wholeNumber

111



5.1. PEANO NUMBERS CHAPTER 5. SELF REFERENCE

Finding the successor of a number is just a matter of tacking “OnePlus” to the front, a process
easily automated.

- fun succ(num) = OnePlus(num);

Conversion from an int to a wholeNumber is a recursive process—the base case, 0, can be returned
immediately; for any other case, we add one to the wholeNumber representation of the int that comes
before the one we are converting. (Negative ints will get us into trouble.)

- fun asWholeNumber(0) = Zero

= | asWholeNumber(n) = OnePlus(asWholeNumber(n-1));

val asWholeNumber = fn : int -> wholeNumber

Notice how subtracting one from the int and adding one to the resulting wholeNumber balance
each other off. Opposite the successor, we define the predecessor of a natural number n, pred(n),predecessor

to be the number of which n is the successor. From Axiom 10 we can prove that the predecessor of
a number, if it exists, is unique; Axiom 9 says that 0 has no predecessor. Pattern matching makes
stripping off a “OnePlus” easy:

- fun pred(OnePlus(num)) = num;

Warning: match nonexhaustive

OnePlus num => ...

val pred = fn : wholeNumber -> wholeNumber

The “match nonexhaustive” warning is okay; we truly want to leave the operation undefined for
Zero. Using the function on Zero, rather than failing to define it for Zero, would be the mistake.

- val three = asWholeNumber(3);

val three = OnePlus (OnePlus (OnePlus Zero)) : wholeNumber

- pred(three);

val it = OnePlus (OnePlus Zero) : wholeNumber

- pred(Zero);

uncaught exception nonexhaustive match failure

Now we can start defining arithmetic recursively. Zero will always be our base case; anything
we add to Zero is just itself. For other numbers, picture an abacus. We have two wires, each with
a certain number of beads pushed up. At the end of the computation, we want one of the wires to
contain our answer. Thus we push down one bead from the other wire, bring up one bead on the
answer wire, and repeat until the other wire has no beads left. In other words, we define addition
similarly to our recursive gcd lemmas from Section 3.10.

0 + b = b

a + 0 = a

a + b = (a + 1) + (b− 1) if b �= 0

112



CHAPTER 5. SELF REFERENCE 5.1. PEANO NUMBERS

Start
a = 4

b = 3

Progress
a = 5

b = 2

Finish
a = 7

b = 0

In ML,

- fun plus(Zero, num) = num

= | plus(num, Zero) = num

= | plus(num1, OnePlus(num2)) = plus(OnePlus(num1), num2);

Examine for yourself the similar structure of isLessThanOrEqualTo. Keep in mind that recursively-
defined predicates have two base cases, one true and one false. Here the first and second parameters
are in a survival contest; they repeatedly shed a OnePlus, and the first one reduced to Zero loses.

- fun isLessThanOrEq(Zero, num) = true

= | isLessThanOrEq(num, Zero) = false

= | isLessThanOrEq(OnePlus(num1), OnePlus(num2)) = isLessThanOrEq(num1, num2);

What happens if the two numbers we are comparing are equal? In other words, what if they
both strip down to zero simultaneously? The result should be true, since it is true that 7 ≤ 7. The
expression isLessThanOrEq(Zero, Zero) will match to the first pattern, so it will indeed return
true. Notice how important the order of the first two patterns is. If we were to swap them, we
would have

- fun isLessThan(num, Zero) = false

= | isLessThan(Zero, num) = true

= | isLessThan(OnePlus(num1), OnePlus(num2)) = isLessThan(num1, num2);

For subtraction, we observe

a− 0 = a

a− b = (a− 1)− (b− 1) if a �= 0 and b �= 0

In ML,

- fun minus(num, Zero) = num

= | minus(OnePlus(num1), OnePlus(num2)) = minus(num1, num2);

Warning: match nonexhaustive

(num,Zero) => ...

(OnePlus num1,OnePlus num2) => ...

val minus = fn : wholeNumber * wholeNumber -> wholeNumber

This rightly leaves the pattern minus(Zero, OnePlus(num)) undefined. Finally, conversion back
to int is just a literal interpretation of the identifiers we gave to the constructor expressions.

113



5.2. TREES CHAPTER 5. SELF REFERENCE

- fun asInt(Zero) = 0

= | asInt(OnePlus(num)) = 1 + asInt(num);

This section received much inspiration from Felleisen and Friedman[7].

Exercises

5.1.1 Write a function isEven for the wholeNumber type.

5.1.2 Write a function multiply for the wholeNumber type.

5.1.3 Write a function divide, performing integer division, for the
wholeNumber type. �Hint: The Division Algorithm from Ex-
ercise 3.10.5 is a good place to start.)

5.1.4 Write a function modulo, performing the mod operation, for
the wholeNumber type.

5.1.5 Write a function gcd, computing the greatest common divi-
sor, for the wholeNumber type.

Natural numbers that are powers of 2 can be defined as

• 1, or

• 2 times a power of 2.

We can represent this in ML as

- datatype powerOfTwo = One | TwoTimes of powerOfTwo;

5.1.6 Write a function multiply, multiplying two powerOfTwos to
get another powerOfTwo.

5.1.7 Write a function asPowerOfTwo, converting an int to the
nearest powerOfTwo less than or equal to it.

5.1.8 Write a function asInteger, converting a powerOfTwo to an
equivalent int

5.1.9 Write a function logBase2, computing an int base 2 loga-
rithm from a powerOfTwo �that is, the type of this function
should be powerOfTwo ­> int).

If ML did not come with a list construct, we could define our own
using the datatype

- datatype homemadeList =

= Null | Cons of int * homemadeList;

5.1.10 Write a function head for homemadeList, equivalent to the
ML primitive hd.

5.1.11 Write a function tail for homemadeList, equivalent to the
ML primitive tl.

5.1.12 Write a function cat to concatenate two homemadeLists.
equivalent to the ML primitive @.

5.1.13 Write a function isElementOf for homemadeList.

5.1.14 Write a function makeNoRepeats for homemadeList.

5.1.15 Write a function sum for homemadeList.

5.1.16 Write a function map for homemadeList, like the map function
of Section 6.5.

5.2 Trees

Trees are useful mechanisms for organizing information. They are used in many contexts and fields
of study. You all have seen such common uses as genealogical trees and the phone trees used by
customer service numbers.

A tree is a collection of nodes and links. We will take node to be a primitive. A link is antree

node

link

ordered pair of nodes, and each node is the second node in exactly one link, except for one special
node which is not the second node in any link; we call this special node the root of the tree. Nodes

root that are not the first node in any link are called leaves; all other nodes (nodes which are the first
leaf

node in at least one link) are called internal nodes. To avoid the awkward phrasing of “being a the
internal node

first node in a link,” we will say that there exists a link from one node to another, and we will call
the first node the parent and the other the child .parent

child Our interest is in a specific kind of tree, a full binary tree which is either
full binary tree

• a single node with no links, or

• a node together with links to two other full binary trees

(Technically, the designation that it is a binary tree means that any node may have at most two
children; full eliminates the case of a node having exactly one child, that is, it requires internal
nodes to have the full two children possible or none at all.)

We can model this in ML with this datatype:

114


