
5.4. STRUCTURAL INDUCTION CHAPTER 5. SELF REFERENCE

5.4 Structural induction

Observe the following about full binary trees:
Tree Nodes Links

1 0

3 2

5 4

5 4

7 6

Clearly every full binary tree has one more node than it has links. An intuitive explanation is
not too hard, either; we can pair up each node with the link above it, and this will account for every
link and also every node, except for the root. Thus there is one more node than there are links. But
how can we prove it formally?

Another way to state our observation takes into account that trees are built from smaller trees.
Any time we make a new tree, we take two other trees and link them together with a new root. This
adds two new links and one new node. If the two older trees already each had one more node than
links, the new tree will also.

This property is an invariant , a proposition that does not vary through changing circumstances.invariant

In this case, the holding of the property for the tree depends on the property holding on subtrees. We
have a new format of proof, this for an invariant over a recursively-defined mathematical structure.

Theorem 5.1 For any full binary tree T � nodes(T ) = links(T ) + 1.

Proof. Suppose T is a full binary tree.

This is all we are given. We need to use the definition to analyze what this means.

By definition of full binary tree, T is either a single node or a node with links to two full
binary trees.

Two possibilities. This calls for division into cases. We will use special names for these cases, based
on how they correspond to cases in the recursive definition of full binary tree.

122



CHAPTER 5. SELF REFERENCE 5.4. STRUCTURAL INDUCTION

Base case. Suppose T is a single node. Then it has one node (itself) and no links, that
is nodes(T ) = 1 and links(T ) = 0. Thus nodes(T ) = links(T ) + 1.

Inductive case. Suppose T is a node with links to two other full binary trees, call
them T1 and T2. Since T adds one node and two links to the subtrees, nodes(T ) =
nodes(T1) + nodes(T2) + 1 and links(T ) = links(T1) + links(T2) + 2.

Here is the new part. From what we said earlier, we know T1 and T2 each have one more node than
links. How do we know that, formally? The theorem itself tells us.

By structural induction, nodes(T1) = links(T1) + 1 and nodes(T2) = links(T2) + 1.
Then

nodes(T ) = nodes(T1) + nodes(T2) + 1 as stated above
= links(T1) + 1 + links(T2) + 1 + 1 by substitution
= links(T1) + links(T2) + 2 + 1 by algebra
= links(T ) + 1 by substitution

Either way, nodes(T ) = links(T ) + 1. �

Why does that work? It is the same principle behind recursive algorithms and recursive struc-
tures. We can apply the proof of this theorem to the subtrees, which requires it to be applied to
their subtrees, until we reach the leaves.

it’s a leaf

tree because
it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

and

it’s a leaf

and

and

it’s a leaf

it’s a leaf

it holds for this

In our proof, we cite this as “by structural induction.” This is the proof technique which performs structural induction

a division into cases based on the structure of a recursively defined set. The proposition we proved
can be broken down to a predicate

I(T ) = nodes(T ) = links(T ) + 1

wrapped in a universally quantified proposition

∀ T ∈ T � I(T ).

where T is the set of full binary trees. Therefore, propositions which are predicates universally
quantified over a recursively-defined set are candidates for proof by structural induction.

123



5.5. MATHEMATICAL INDUCTION CHAPTER 5. SELF REFERENCE

Exercises

Prove using structural induction.

5.4.1 For any full binary tree T , leaves�T ) = internals�T ) + 1.

5.4.2 For any fully binary tree T , leaves�T ) ≤ 2height�T ).

5.4.3 For any full binary tree T , nodes�T ) ≤ 2height�T )+1 − 1.

5.4.4 For any full binary tree T , nodes�T ) is odd. �Prove this di-
rectly, using structural induction. Do not use Theorem 5.1

or an earlier exercise as a lemma.)

5.4.5 Let the set S be defined so that for all s ∈ S, either

• s = 3, or

• s = t + u for some t� u ∈ S.

Then for all s ∈ S, 3|s.

5.5 Mathematical induction

This section is one of our occasional forays into the world of integers. Consider numbers in the form
3n − 1 for n ∈ W.

n 0 1 2 3 4 5 6 7 8

3n − 1 0 2 8 26 80 242 728 2186 6560

From these examples, one might expect that all numbers in that form are even. Not a surprising
result, in fact, since by eyeballing it we can tell that 3n will be odd and so 3n − 1 will be even. Let
us wrap that in a predicate

I(n) = 3n

− 1 is even.

And our claim becomes ∀ n ∈ W� I(n).
If we take a specific example, say 34 − 1, we see

34
− 1 = 3 · 33

− 1 = 3 · (33
− 1 + 1)− 1 = 3 · (33

− 1) + 3− 1 = 3 · (33
− 1) + 2

This might seem like a haphazard rearranging of values, but what it does is relate 34 − 1 to
33 − 1, and moreover relates I(4) to I(3). If we knew I(3) were true, a simple manipulation would
yield I(4).

Lemma 5.1 If I(3)� then I(4).

Proof. Suppose I(3), that is, 33 − 1 is even. By definition of even, 33 − 1 = 2 · k for
some k ∈ Z. Then,

34 − 1 = 3 · (33 − 1) + 2 as we showed above
= 3 · (2 · k) + 2 by substitution
= 2 · (3 · k + 1) by algebra

Since 3 · k + 1 ∈ Z, 34 − 1 is even by definition. �

In Section 5.1, we learned a recursive construction for the whole numbers. In Section 5.4, we
learned a proof technique for propositions universally quantified over recursively-defined sets. Let
us put these things together to prove

Theorem 5.2 For all n ∈ W� 3n − 1 is even.

Proof. Suppose n ∈ W. By definition of whole number (from Section 5.1), either n = 0
or n = m + 1 where m ∈ W.

Base case: Suppose n = 0. Then 3n − 1 = 30 − 1 = 1− 1 = 0 = 2 · 0, which is even by
definition.

124


