
CS 335 — Software Development

Refactoring

March 21, 2011

Material adapted from Martin Fowler, Refactoring

What is refactoring?

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure. It is a
disciplined way to clean up code that minimizes the
chances of introducing bugs. In essence when you
refactor you are improving the design of the code after it
has been written. [Fowler, pg xvi, emphasis added]

I Preserve interface and behavior (contract)

I Preserve correctness

I Improve design

I Improve performance

Behavior vs. performance

Principles of refactoring

When you find you have to add a feature to a program,
and the program’s code is not structured in a convenient
way to add the feature, first refactor the program to
make it easy to add the feature, then add the feature.
[Folwer, pg 7]

Before you start refactoring, check that you have a solid
suite of tests. These tests must be self-checking [Fowler,
pg 8]

Principles of refactoring

Refactoring changes the programs in small steps. If you
make a mistake, it is easy to find the bug. [Fowler, pg 13]

When should you refactor?

I Three strikes and you refactor.

The first time you do something, you just do it. The second
time you do something similar, you wince at the duplication,
but you do the duplicate thing anyway. The third time you do
something similar, you refactor.

I Refactor when you add functionality.

I Refactor when you need to fix a bug.

I Refactor as you do a code review. [Fowler, 58-59]

Bad smells in code

Precise criteria is difficult. Instead, look for bad smells.

If it stinks, change it.

Bad smells in code

Duplicated code

I Same expression in two methods of the same class.

I Same expression in two sibling subclasses

I Duplicated code in two unrelated classes

Use Extract Method, Pull Up Method, and Extract class.

Bad smells in code

Long method

[O-O] programs that live best and longest are those with
short methods. [To novices, it seems like] no
computation ever takes place, that [O-O] programs are
endless sequences of delegation. . . . however, you learn
just how valuable all those little methods are.
. . . the longer a procedure is, the more difficult it is to
understand. . . . be much more aggressive about
decomposing methods. A heuristic we follow is that
whenever we feel the need to comment something, we
write a method instead. [Fowler, 76-77]

Use Extract Method, Form Template Method and others.

Bad smells in code

Large class

When a class is trying to do too much, it often shows up
as too many instance variables. When a class has too
many instance variables, duplicated code cannot be far
behind.
A class with too much code is prime breeding ground for
duplicated code, chaos, and death. [Fowler, pg 78]

Use Extract Class and Extract Subclass.

Bad smells in code

Long parameter list

In our early programming days were were taught to pass
in as parameters everything needed by a routine. [T]he
alternative was global data, and global data is evil and
usually painful. Objects change this situation because if
you don’t have something you need, you can always ask
another object to get it for you.
[L]ong parameter lists are hard to understand because
they become inconsistent and difficult to use and because
you are forever changing them as you need more data.
[Fowler, 78-79]

Use Replace Parameter with Method and Preserve Whole Object.

Bad smells in code

Divergent change and Shotgun surgery

When we make a change, we want to be able to jump to
a single clear point in the system and make the change.
Divergent change occurs when one class is commonly
changed in different ways for different reasons . . . you
likely have a situation where two objects are better than
one.
Shotgun surgery is similar but opposite—when every time
you make a change, you have to make a lot of little
changes to a lot of different classes. [Fowler, 79-80]

Use Extract Class; Move Method and Inline Class

Bad smells in code

Feature envy

Objects are a technique to package data with the
processes used on that data. A classic smell is a method
more interested in a class other than the one it is in The
most common focus of the envy is the data.
The heuristic we use is to determine which class has most
of the data and put the method with that
data. . . Strategy and Visitor [break this rule]. [Fowler, pg
80]

Use Move Method and Extract Method.

Bad smells in code

Data clumps

Data items tend to be like children; they enjoy hanging
around in groups together. [Such groups] ought to be
made into their own object. The immediate benefit is
that you can shrink a lot of parameter lists. [Fowler, pg
81]

Use Extract Class.

Bad smells in code

Primitive obsession

People new to objects usually are reluctant to use small
objects for small tasks, such as money classes, telephone
numbers, ZIP codes. . . [Fowler, pg 82]

Use Replace Data Value with Object

Bad smells in code

Switch statements

I Hallmark of OO: lack of switch statements

I Problem: duplication; many clauses in scattered locations
need change

I When you see a switch statement, replace with polymorphism

Use Extract Method and Replace Conditional with Polymorphism.

Bad smells in code

Comments

[C]omments often are used as a deodorant. [L]ook at
thickly commented code and notice that the comments
are there because the code is bad.
Comments lead us to bad code that has all the other bad
smells. Our first action is to remove the bad smells by
refactoring. When we’re finished, we often find that the
comments are superfluous. [Fowler, pg 87]

When you feel the need to write a comment, first try to refactor
the code so that any comment becomes superfluous.

Bad smells in code

Inappropriate intimacy.

Sometimes classes become far too intimate and spend
too much time delving in each others’ private parts. Over
intimate classes need to be broken up as lovers were in
ancient days. If classes do have common interests, put
the commonality in a safe place and make honest classes
of them, or let another class act as go-between.
Inheritance often can lead to overintimacy. Subclasses
are always going to know more about their parents than
their parents would like them to know. If it’s time to
leave home, replace inheritance with delegation. [Fowler,
pg 85]

Bad smells in code

Parallel inheritance hierarchies. Shotgun surgery at the class level.
Compare Abstract Factory, Bridge, Decorator. . .

Lazy class. A class that isn’t doing enough to pay for itself
should be eliminated.

Speculative generality. “I think I’ll need it in the future.” Are
abstract classes doing much? Are the only users of a
method the test cases?

Temporary field. Some classes have instance variables set only
under certain circumstances.

Bad smells in code

Message chains. Long line of “get this” methods; client is coupled
to the structure of navigation.

Middle man. Encapsulation leads to delegation, which is fine; if
half a class’s methods are delegating to another
class, it has gone too far.

Alternative classes with different interfaces. Move behavior to
classes until the protocols are the same.

Bad smells in code

Incomplete library class. Reuse is overrated; builders of library
classes are rarely omniscient; use selectively.

Data class. Classes that have fields, getters, and setter; data
classes are like children. They are ok as a starting
point, but to participate as a grownup object, they
need to take some responsibility.

Refused bequest. What if subclasses don’t want or need what they
are given? The hierarchy is wrong (maybe).

Refactorings

Plain (obvious) examples

I Pull up, push down, or move a field or method (inter-class)

I Replace conditional with polymorphism (intra-method)

I Replace temporary with query / inline temporary
(intra-method)

I Replace magic number with symbolic constant (intra-method)

Intra method

I Consolidate duplicate conditional fragments (obvious)

I Replace nested conditional with guard clauses (obvious)

I Replace conditional with polymorphism (obvious)

I Introduce assertion (obvious)

I Replace error code with exception, replace exception with test
(obvious)

I Decompose conditional (standard)

I Introduce explaining variable (standard)

Inter-method / intra-class

I Add parameter (obvious)

I Encapsulate downcast (slick)

I Introduce parameter object (slick)

I Duplicate observed data (artful)

I Introduce null object (artful)

I Encapsulate collection (artful)

Type code (inter-method / intra-class)

I Replace type code with class (standard)

I Replace type code with subclasses (standard)

I Replace type code with state/strategy (slick)

Inter class

I Collapse hierarchy (standard)

I Extract interface/subclass/superclass (standard)

I Form template method (slick)

I Extract class / inline class (slick)

I Interchange bidirectional and unidirectional association (slick)

Dealing with legacy code

I Introduce foreign method (inter-method, standard)

I Introduce local extension (inter-class, slick)

Class hierarchy (inter-class)

I Replace inheritance with delegation, and vice versa (slick)

I Tease apart inheritance (artful)

