
CHAPTER 2. PROPOSITION 2.15. VERIFYING ARGUMENTS AUTOMATICALLY

2.15 Extended example: Verifying arguments au-
tomatically

The ML programming language was originally developed for writing and extending
software for automatic theorem proving. When you observe the formal, almost
mechanical process we have used in the games of this chapter, you can see why
people would reason that if a computer can do arithmetic, it should also be able to
produce or at least verify arguments.

In this section, we will build an ML program to play Game 2, or the equivalent—
that is, a program that will determine whether or not an argument is valid. In our
program, however, we will approach this verification at a different angle from what
we used in Game 2.

Recall the alternative definition of a valid argument. If p1, p2, . . . pn are premises
and s is a conclusion, then the argument is valid if (p1 ∧ p2 ∧ . . . ∧ pn) → s is a
tautology. For example, if you took the truth table you made for verifying division
into cases in Exercise 2.8.5 and added an extra column for

((p ∨ q) ∧ (p → r) ∧ (q → r)) → r

you would find that that column is true for every assignment to p, q, and r. For
our automatic argument checker, we will convert the argument into a formula like
this and then check to see that it is a tautology.

First, we need a way to represent logical formulas—we will simply call them
propositions—in ML. The propositions we have used can be

• Variables, say p, q, r, . . .

• Negations of propositions, say ∼ p or ∼ (q ∨ (p ∧ r)).

• Conjunctions of propositions, say (p ∨ q) ∧ r.

• Disjunctions of propositions, say ∼ q ∨ r.

• Conditionals of propositions, say p →∼ (q ∨ r).

A proposition can contain smaller propositions—our definition of a proposition
(by listing the different kinds) is self-referential. This means that if we make an
ML datatype proposition, it will need to be self-referential as well. Fortunately ML
datatypes, like ML functions, can be defined recursively.

To simplify things a bit, we first eliminate conditionals, because any conditional
can be expressed with negation and disjunction: p → q ≡∼ p ∨ q. Also, we will
consider conjunctions and disjunctions to be two kinds of binary operations.

datatype binLogOp = Conj | Disj;

datatype proposition = Var of string

| Neg of proposition

| BinOp of binLogOp * proposition * proposition;

119



2.15. VERIFYING ARGUMENTS AUTOMATICALLY CHAPTER 2. PROPOSITION

When a value of this datatype represents a proposition, for example p∧ ∼ (q∨r),
it will have a branching structure like this

,

Var("r")Var("q")

),

)

Var("p") )

BinOp(Disj,

BinOp(Conj,

Neg(

To make it a little easier to make conjunctions, disjunctions, and conditionals,
we add a few functions:

fun conj(p, q) = BinOp(Conj, p , q);

fun disj(p, q) = BinOp(Disj, p, q);

fun cond(p, q) = BinOp(Disj, Neg(p), q);

It is always helpful to write a function that produces a string representation of
a datatype. In this case, adding appropriate parentheses is the tricky part

fun display(Var(s)) = s

| display(Neg(Var(s))) = "~" ^ s

| display(Neg(p)) = "~(" ^ display(p) ^ ")"

| display(BinOp(oper, p, q)) =

(case p of

BinOp(subOp, pp, qq) => if subOp = oper

then display(p)

else "(" ^ display(p) ^ ")"

| _ => display(p)) ^

(case oper of

Conj => "^"

| Disj => "v") ^

(case q of

BinOp(subOp, pp, qq) => if subOp = oper

then display(q)

else "(" ^ display(q) ^ ")"

| _ => display(q));

Trying it out:

- conj(Var("p"), Neg(disj(Var("q"), Var("r"))));

val it = BinOp (Conj,Var "p",Neg (BinOp (#,#,#))) : proposition

120



CHAPTER 2. PROPOSITION 2.15. VERIFYING ARGUMENTS AUTOMATICALLY

- display(it);

val it = "p^~(qvr)" : string

The arguments we want to verify will have long sequences of conjunctions since
we want to conjoin all our premises. To make this easier, we write a function that
will turn a list of propositions into a proposition that is the equivalent of anding
all those propositions together. While we are at it, we may as well do the same for
disjunctions.

exception EmptyBigConjOrDisj;

fun bigConj([]) = raise EmptyBigConjOrDisj

| bigConj([p]) = p

| bigConj(p::rest) = conj(p, bigConj(rest));

fun bigDisj([]) = raise EmptyBigConjOrDisj

| bigDisj([p]) = p

| bigDisj(p::rest) = disj(p, bigDisj(rest));

We can now use this to encode an argument. Take the argument in Exercise 2.9.1

(a) t → u
(b) p∨ ∼ q
(c) p → (u → r)
(d) q
(e) ∴ t → r

- val orig = cond(bigConj([cond(Var("t"), Var("u")),

= BinOp(Disj, Var("p"), Neg(Var("q"))),

= cond(Var("t"), cond(Var("u"), Var("r"))),

= Var("q")]),

= cond(Var("t"), Var("r")));

val orig = BinOp (Disj,Neg (BinOp (#,#,#)),BinOp (Disj,Neg #,Var #))

: proposition

- print(display(orig) ^ "\n");

~((~tvu)^(pv~q)^(~tv~uvr)^q)v~tvr

val it = () : unit

121



2.15. VERIFYING ARGUMENTS AUTOMATICALLY CHAPTER 2. PROPOSITION

Now for the real work. We have a formula equivalent to our argument, and
we want to check that it is true for any assignment to the variables. We could
take a “brute force” approach, equivalent to making a truth table: enumerate every
possible combination of true and false values and evaluate the formula for each one
of them. While this would make an interesting exercise (see Project 2.15.C), there
is a more efficient way.

Consider the proposition

(p ∨ q ∨ r) ∧ (q∨ ∼ t∨ ∼ u) ∧ (u∨ ∼ p ∨ t)

This is not a tautology—just pick all of p, q, and r to be false. That makes the
first subproposition (p ∨ q ∨ r) false, and since we are joining several propositions
together with conjunctions, that makes the entire proposition false. On the other
hand,

(p ∨ q ∨ r∨ ∼ q) ∧ (q∨ ∼ t∨ ∼ u ∨ t) ∧ (u∨ ∼ p ∨ t ∨ p)

is a tautology, and this is how we tell: since we again are anding several subpropo-
sitions together, this entire proposition will be true exactly under those situations
where every subproposition is true. So, this proposition is a tautology (always true)
if and only if all of its subpropositions are tautologies.

The first subproposition is always true because no matter how you assign the
variables, either q or ∼ q must be true, and either of them will make the whole sub-
proposition true. If a chain of disjunctions contains both a variable and its negation,
then that chain of disjunctions is a tautologies. The other two subpropositions in
this example are tautologies because they contain both ∼ t and t and both ∼ p and
p.

We picked an easy one, however: If the proposition is a big conjunction of
subpropositions, each of which is a big disjunction of variables or negations of
variables, then all we need to do is see if each subproposition contains some variable
and its negation. But this is the core of our strategy: To determine if something is
a tautology, we will first transform it into an equivalent “easy one,” and then use a
simple test to see if it is a tautology.

We will do this in two steps. First, we want to make sure that negations are
applied only to variables—not to binary operations, not to other negations. A
proposition is in negation normal form if the only negations in it are applied directlynegation normal form

to variables. Transforming a proposition to negation normal form is straightforward:
work from the outside, top-level proposition into the subpropositions; if you find a
double negation, remove both because they cancel each other out; if the negation
is applied to a binary operation, then push it in and flip the operator, following De
Morgan’s laws. For example,

122



CHAPTER 2. PROPOSITION 2.15. VERIFYING ARGUMENTS AUTOMATICALLY

∼ ((p∨ ∼ q)∧ ∼ r)
≡ ∼ (p∨ ∼ q)∨ ∼∼ r
≡ (∼ p∧ ∼∼ q) ∨ r
≡ (∼ p ∧ q) ∨ r

Writing a function for this is intuitive when you use pattern matching. Specifi-
cally, the interesting cases are the various things a negation can be applied to:

fun flip(Conj) = Disj

| flip(Disj) = Conj;

fun negNormForm(Var(s)) = Var(s)

| negNormForm(Neg(Var(s))) = Neg(Var(s))

| negNormForm(Neg(Neg(p))) = negNormForm(p)

| negNormForm(Neg(BinOp(oper, p, q))) =

BinOp(flip(oper), negNormForm(Neg(p)), negNormForm(Neg(q)))

| negNormForm(BinOp(oper, p, q)) =

BinOp(oper, negNormForm(p), negNormForm(q));

Try it:

- val nnf = negNormForm(orig);

val nnf = BinOp (Disj,BinOp (Disj,BinOp #,BinOp #),

BinOp (Disj,Neg #,Var #)) : proposition

- print(display(nnf) ^ "\n");

(t^~u)v(~p^q)v(t^u^~r)v~qv~tvr

val it = () : unit

What we had been calling “easy ones” are actually propositions in , which conjunctive normal
formmeans that the proposition is the conjunction of subpropositions, each of which is

the disjunction of variables and negations of variables. Just as the transformation
to negation normal form uses De Morgan’s law, the transformation to conjunctive
normal form uses the distributive law, specifically p∨ (q ∧ r) ≡ (p∨ q)∧ (p∨ r). For
example,

∼ q ∨ (r ∨ (∼ p ∧ q))
≡ ∼ q ∨ ((r∨ ∼ p) ∧ (r ∨ q))
≡ (∼ q ∨ r∨ ∼ p) ∧ (∼ q ∨ r ∨ q)

The code for conversion to conjunctive normal form is harder to follow. We
start with a function that takes two propositions and distributes the first over

123



2.15. VERIFYING ARGUMENTS AUTOMATICALLY CHAPTER 2. PROPOSITION

the second using disjunction. This is only interesting if the second proposition is a
conjunction—otherwise we merely create a disjunction. The function for converting
to conjunctive normal form assumes the proposition is already in negation normal
form and raises an exception if it is not. The interesting case is if the position
being transformed is a conjunction: then we transform the two subproposition and
distribute.

fun distribute(p, BinOp(Conj, q, r)) =

BinOp(Conj, distribute(p, q), distribute(p, r))

| distribute(BinOp(Conj, p, q), r) =

BinOp(Conj, distribute(p, r), distribute(q, r))

| distribute(p, q) = BinOp(Disj, p, q);

exception NotInNNF of string;

fun conjNormForm(Var(s)) = Var(s)

| conjNormForm(Neg(Var(s))) = Neg(Var(s))

| conjNormForm(Neg(p)) = raise NotInNNF(display(Neg(p)))

| conjNormForm(BinOp(Conj, p, q)) =

BinOp(Conj, conjNormForm(p), conjNormForm(q))

| conjNormForm(BinOp(Disj, p, q)) =

distribute(conjNormForm(p), conjNormForm(q));

Continuing our example:

- val cnf = conjNormForm(nnf);

val cnf =

BinOp (Conj,BinOp (Conj,BinOp #,BinOp #),

BinOp (Conj,BinOp #,BinOp #))

: proposition

- print(display(cnf) ^ "\n");

(tv~pvtv~qv~tvr)^(~uv~pvtv~qv~tvr)^(tvqvtv~qv~tvr)^

(~uvqvtv~qv~tvr)^(tv~pvuv~qv~tvr)^(~uv~pvuv~qv~tvr)^

(tvqvuv~qv~tvr)^(~uvqvuv~qv~tvr)^(tv~pv~rv~qv~tvr)^

(~uv~pv~rv~qv~tvr)^(tvqv~rv~qv~tvr)^(~uvqv~rv~qv~tvr)

val it = () : unit

The output is getting hard to read, but it does not need to be human readable
at this point—only computer readable.

Now for the actual tautology testing. At this point we assume that every propo-
sition is either a disjunction of variables and negations of variables or the conjunc-
tion of such variables. If it is a top-level conjunction, then we check that every

124



CHAPTER 2. PROPOSITION 2.15. VERIFYING ARGUMENTS AUTOMATICALLY

subproposition is a tautology. If it is a subproposition (disjunction), we check that
it is a tautology by seeing if it has both a variable and its negation; we do that by
collecting all the plain variables and all the variables that are negated and seeing if
they have any overlap. To do all this, we write functions positives and negatives

to collect those variables. We also rely on the functions contains from Section 2.7
and intersection from Exercise 2.7.6. We raise an exception if the proposition is
not in conjunctive normal form.

exception NotInCNF of string;

fun positives(Var(s)) = [s]

| positives(Neg(Var(s))) = []

| positives(BinOp(Disj, p, q)) = positives(p) @ positives(q)

| positives(x) = raise NotInCNF(display(x));

fun negatives(Var(s)) = []

| negatives(Neg(Var(s))) = [s]

| negatives(BinOp(Disj, p, q)) = negatives(p) @ negatives(q)

| negatives(x) = raise NotInCNF(display(x));

fun tautCNF(BinOp(Conj, p, q)) = tautCNF(p) andalso tautCNF(q)

| tautCNF(p) = intersection(positives(p), negatives(p)) <> [];

We could apply tautCNF directly to our value cnf, but to make future use easier,
we write a function that will merely take a list of premises and a conclusion and
will do all the other work for us.

- fun validArgument(premises, conclus) =

= tautCNF(conjNormForm(negNormForm(cond(bigConj(premises),

= conclus))));

val validArgument = fn : proposition list * proposition -> bool

- validArgument([cond(Var("p"), Var("t")),

= cond(Neg(cond(Var("q"), Var ("t"))), Var("w")),

= BinOp(Disj, Var("p"), Var("q")),

= Neg(Var("w"))],

= Var("t"));

val it = true : bool

This example and project were adapted from Paulson[22, pg 164–170].

125



2.15. VERIFYING ARGUMENTS AUTOMATICALLY CHAPTER 2. PROPOSITION

Project

2.A The software in this section plays Game 2. It can
be adapted to play Game 1 as well, if we make
the observation that two propositions are logically
equivalent (p ≡ q) if and only if their biconditional
is a tautology (p ↔ q ≡ T ). Write a helper function
bicond which takes two propositions and creates
a proposition in our system equivalent to p ↔ q.
Then write a function logEquiv that takes two
propositions and uses bicond and functions from
this section to determine if the two propositions
are logically equivalent.

2.B The “propositions” in this section of course are
not truly propositions because they have variables
in them. In order to evaluate a proposition (tell
whether it is true or false), we need to have an as-
signment to the variables—that is, a specific true
or false value assigned to each variable. Each row
in a truth table represents an assignment to the
variables. Consider this datatype:

datatype assignment = Assign of (string *

bool) list

Such an assignment associates variable names
(strings) with truth values. Write a function lookup

that takes an assignment and a string standing for a
variable and returns a truth value assigned to that
variable. Define an exception for it to raise if the
string is not a bound variable. Then write a func-
tion evaluateProposition that takes a proposition
and an assignment and determines its value.

2.C With evaluateProposition, it is possible to test if
two propositions are logically equivalent by taking
a “brute force” approach, similar to using a truth
table. We would generate all possible assignments

for a list of variables, evaluate both propositions for
each assignment, and verify that the two proposi-
tions are always equal. Write a function logEquiv2

that tests for logical equivalence in this way. Rec-
ommended helper functions are

• enumerateAssignments, which takes a
list of variable names and produces a
list of assignments, one for each possi-
ble combination of values. For example,
enumerateAssignments(["p", "q"]) would
return [Assign [("p",true),("q",true)],

Assign [("p",false),("q",true)],

Assign [("p",true),("q",false)],

Assign [("p",false),("q",false)]].

• testAllAssignments, which takes two propo-
sitions and a list of assignments and evaluates
each proposition for each assignment and ver-
ifies that the propositions are equal for each
assignment.

• collectVars, which takes a proposition and
produces a list of variable names. So that
no variable occurs in the resulting list more
than once, use the union operation from Ex-
ercise 2.7.6 or 2.7.8.

2.D A problem similar to the one in this section is that
of determining whether a proposition is a contra-
diction—always false. The easy propositions for
contradiction testing are those in disjunctive nor-
mal form—big disjunctions of subpropositions that
each are conjunctions of variables or negations of
variables. Write a set of functions that will turn a
proposition into disjunctive normal form and then
test whether the proposition is a contradiction.

Biography: Lawrence Paulson, 1955–

Lawrence Paulson is a computer scientist who has advanced the field of automatic theorem proving
and logic. Having studied in the United States (California Institute of Technology and Stanford
University), he has spent most of his career at Cambridge University. He has contributed to several
software systems that produce proofs of theorems by automated reasoning. His research has included
foundations of mathematics, such as set theory and symbolic logic. He also has developed a system
for interactive verification of cryptographic protocols.

126


