
3.11. SOLVING GAMES CHAPTER 3. PROOF

3.11 Extended example: Solving games

Using computers to solve puzzle-like games illustrates the power of computing ma-
chinery, or at least an illustration of what machinery can do better than the human
mind can. Games that have positions or configurations—that is, the arrangement of
pieces on a board or numbers or letters in a puzzle—can be played by a computer by
sifting through large amounts of data on possible outcomes of the game. The speed
and abundance of computer memory gives machines an incomparable advantage
over humans. An unbeatable tic-tac-toe-playing program is fairly straightforward
to write. Computer chess-playing engines now regularly beat the world’s top human
players.

In this section, we try our hand at writing programs to solve puzzles that require
searching through solutions. The first is called bulls and cows. One player thinks of
a four-digit number with no digit appearing more than once (we also assume that
the number does not begin with 0). The other player guesses the number. After
each guess, the first player tells how many bulls and cows the guess has: a digit
in the correct place is a bull, and a correct digit in a wrong place is a cow. If the
secret number is 4721 and the guess is 5124, then this guess has one bull (2) and
two cows (1 and 4).

We will represent a solution or guess in ML using a tuple of ints. Here is
how we test if a 4-tuple is a valid guess (the function makeNoRepeats comes from
Exercise 2.7.8):

fun isValidGuess(a,b,c,d) =
0 < a andalso a < 10 andalso 0 <= b andalso b < 10 andalso
0 <= c andalso c < 10 andalso 0 <= c andalso c < 10 andalso
count(makeNoRepeats([a, b, c, d])) = 4;

First consider how to make the computer play the role of the first player and
evaluate the second player’s guesses. (Later we will write a program that acts as
the guesser.) This program will be interactive. When the human player makes a
guess, he or she will call a function that will check the guess and report on bulls
and cows. To do this, we need the system to remember the secret number and the
number of guesses between function calls. This is not the usual mode for ML, but
it still can be done using reference variables. symbols that hold values that canreference variables

be updated. Reference variables are declared in the ordinary way except with the
keyword ref prepended to the value:

val soln = ref (4, 7, 2, 1);
val guesses = ref 0;

To set a reference variable to a new value, we use the operator :=. Such an
operation is a statement, returning a unit value, like print does. Recall from
Section 1.16 that expressions and statements can be compounded using a statement
list. For example, we can reset the game using the following function (realistically

156

CHAPTER 3. PROOF 3.11. SOLVING GAMES

we would want the computer to generate the secret number randomly, but this is
just a warm-up for us):

fun resetGuesses() = (soln := (2, 6, 4, 9);
guesses := 0);

The function bullsAndCows takes a guess and the solution and returns a tuple,
the number of bulls and cows. For each digit in the guess, we compare it with the
digit in the same position in the solution; similarly, we see if each digit in the guess
is one of the other digits in the solution. We package these as lists of booleans,
which numTrue counts.

fun numTrue([]) = 0
| numTrue(false::rest) = numTrue(rest)
| numTrue(true::rest) = 1 + numTrue(rest);

fun bullsAndCows((a,b,c,d), (aa, bb, cc, dd)) =
(numTrue([a = aa, b = bb, c = cc, d = dd]),
numTrue([contains(a, [bb, cc, dd]), contains(b, [aa, cc, dd]),

contains(c, [aa, bb, dd]), contains(d, [aa, bb, cc])]));

The human player submits a guess with checkGuess, which reports on the bulls
and cows in readable format, as well as keeping track of the number of guesses.

fun checkGuess(a, b, c, d) =
if isValidGuess(a, b, c, d)
then

let val (bulls, cows) = bullsAndCows((a, b, c, d), !soln);
in

(guesses := !guesses + 1;
print("Guess # " ^ Int.toString(!guesses) ^ "\n");
print("bulls: " ^ Int.toString(bulls) ^ "\n");
print("cows: " ^ Int.toString(cows) ^ "\n");
if bulls = 4 then print ("Correct!\n") else ())

end
else

print("Invalid guess.\n");

- checkGuess(9,7,2,4);

Guess # 1
bulls: 2
cows: 1
val it = () : unit

- checkGuess(4,7,2,1);

157

3.11. SOLVING GAMES CHAPTER 3. PROOF

Guess # 2
bulls: 4
cows: 0
Correct!
val it = () : unit

A more interesting problem is having the computer guess. Here is our strategy:
We generate a giant list of all possible guesses. We pull guesses from this list. Every
time we are told the bulls and cows for our previous guess, we remove all guesses
from the list that are inconsistent with that result. Suppose we guess 2943 and
are told that there is 1 bull and 2 cows. Then we would eliminate 5913 from the
list because if 5913 were the answer, then our guess 2943 would have had 2 bulls
and 0 cows, but we would keep 3742 because it is consistent with the bull and cow
result—it a possible solution, based on this information.

Our first task is generating the initial guess list. We will create a list containing
all possible combinations of four element from the set of digits. This is similar to
our function to generate a powerset (Exercise 1.15.15): for each combination of
two elements, we want to add each digit to it, then add each digit to all of those
combinations of size three. (See Exercise 1.12.10 for listify and Exercise 1.15.14
for addToEach. The variable guessList is initially set to an empty list as a dummy
variable; we must type it explicitly.)

val guessList = ref ([]:(int*int*int*int) list);
fun addEachToEach([], y) = []
| addEachToEach(a::aRest, y) =

addToEach(a, y)@addEachToEach(aRest, y);
fun enumerateCombinations(x, 1) = listify(x)
| enumerateCombinations(x, r) =

addEachToEach(x, enumerateCombinations(x, r-1));

But this is too much. Our guesses are supposed to be tuples, not lists, and this
process generates many invalid guesses. We can remove those. Also, we would like
to be able to print guesses readably.

fun makeGuessesTuples([]) = []
| makeGuessesTuples([a,b,c,d]::rest) =

(a, b, c, d)::makeGuessesTuples(rest);
fun removeInvalid([]) = []
| removeInvalid(a::rest) =

if isValidGuess(a) then a::removeInvalid(rest)
else removeInvalid(rest);

fun printGuess(a, b, c, d) =
print(Int.toString(a) ^ " " ^ Int.toString(b) ^ " " ^

Int.toString(c) ^ " " ^ Int.toString(d) ^ "\n");

158

CHAPTER 3. PROOF 3.11. SOLVING GAMES

Now, to generate a first guess, we enumerate our guesses and pick one. We keep
track of our most recent guess in a reference variable currentGuess.

val currentGuess = ref (0,0,0,0);
fun firstGuess() =

(guessList :=
removeInvalid(makeGuessesTuples(

enumerateCombinations([0,1,2,3,4,5,6,7,8,9], 4)));
currentGuess := hd(!guessList);
guessList := tl(!guessList);
printGuess(!currentGuess));

The user will play by calling the function guessAgain, providing the number
of bulls and cows in the previous guess. Our last task, then, is to filter our guess
list by removing those guesses we now know to be infeasible. For a given guess a,
bullsAndCows(!currentGuess, a) determines the number of bulls and cows there
would be if a were the right answer and currentGuess were guessed; keep a only
if it matches what the user supplied.

fun removeInfeasible(bulls, cows, []) = []
| removeInfeasible(bulls, cows, a::rest) =

if bullsAndCows(!currentGuess, a) = (bulls, cows)
then a::removeInfeasible(bulls, cows, rest)
else removeInfeasible(bulls, cows, rest);

fun guessAgain(bulls, cows) =
(guessList := removeInfeasible(bulls, cows, !guessList);
currentGuess := hd(!guessList);
guessList := tl(!guessList);
printGuess(!currentGuess));

Our secret number is 2185.

- firstGuess();

1 2 3 4
val it = () : unit

- guessAgain(0, 2);

2 1 5 6
val it = () : unit

- guessAgain(2, 1);

159

3.11. SOLVING GAMES CHAPTER 3. PROOF

2 1 6 7
val it = () : unit

- guessAgain(2, 0);

2 1 8 5
val it = () : unit

All told, bulls and cows is still a simple game. Your project is a program to
solve Sudoku puzzles. The rest of this section will provide the infrastructure and
layout a skeleton of the algorithm.

A Sudoku puzzle contains 81 spaces laid out in a 9× 9 grid, and organized not
only into rows and columns but also into nine 3 × 3 squares. Each space must be
filled with one of nine values, and each value must appear exactly once in each row,
column, and square. The values for some spaces are given as part of the puzzle;
to solve the puzzle, the player must fill-in the remaining spaces. Traditionally the
values are the digits 1–9, but they could be any nine arbitrary values.

To model an instance of the puzzle (a Sudoku board), we use datatypes to define
Sudoku values and Sudoku spaces. A space is either a single, given value, or it is
an open space together with a list of possible values.

datatype sudokuValue = S1 | S2 | S3 | S4 | S5 | S6 |
S7 | S8 | S9;

datatype sudokuSpace = Given of sudokuValue |
Open of sudokuValue list;

Initially any open space has all values of sudokuValue in its list of possibilities.
Our program to solve the puzzle will narrow down the list for each open space until
each has only one possibility. So, when we print the board, for each given space and
for each open space with only one possibility left, we print that one value; for each
open space with more than one possibility left, we print an underscore, indicating
it is still blank; if any space has no possibilities left, the board is in an impossible
state, and we print an X for that space. Hence printSpace and printBoard:

fun printSpace(Given(a)) = printValue(a)
| printSpace(Open([a])) = printValue(a)
| printSpace(Open([])) = "X"
| printSpace(Open(aa)) = "_";

fun printBoard(board) =
let fun printHelper([], n) = ()

| printHelper(a::rest, n) =
(print(printSpace(a) ^ " ");
if n = 80 then print("\n")
else if n mod 27 = 26

160

