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8.3 Strolling about a graph

The obvious way to imagine or visualize a graph is to think of the vertices as places
and the edges as connections or bridges between those places. Accordingly, we can
imagine ourselves or an object moving around in a graph from vertex to vertex.

In fact, that seems to have been the original way graph theory was though of.
Many people consider graph theory to have been begun by a problem proposed by
mathematician Leonhard Euler about crossing bridges while walking around town.
More on that problem later.

A walk from vertex v to vertex w, v� w ∈ V , is a sequence alternating betweenwalk

vertices in V and edges in E, written v0e1v1e2 . . . vn−1envn where v0 = v and vn = w

and for all i, 1 ≤ i < n, ei = (vi−1� vi). You could also think of a walk simply as
a sequence of edges, but it is more difficult to describe the constraint that way; we
certainly could describe the path by listing only the edges. (If a graph is simple,
then it is possible to omit the edges when describing the path.) v is called the initialinitial

vertex and w is called the terminal vertex.
terminal A walk is trivial if it contains only one vertex and no edges; otherwise it is

trivial
nontrivial. The length of a walk is the number of edges (not necessarily distinct,

length

since an edge may appear more than once). In the graph below, some examples
of non-trivial walks are v1e1v2e4v6e9v8e11v7e10v6e8v9 with length 6, v5e14v15 with
length 1, and v11e21v12e17v9e18v13e22v12e17v9e18v13e23v14 with length 7.
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A graph is connected if for all v� w ∈ V , there exists a walk in G from v to w.connected

(Notice that for any vertex there exists a trivial walk to itself, so we do not need
self loops for a graph to be connected.) This graph is not connected, since no walk
exists from v5 or v15 to any of the other vertices. However, the subgraph excluding
v5, v15, and e14 is connected.

A path is a walk that does not contain a repeated edge. v1e1v2e4v6e9v8e11v7e10v6e8v9path

is a path, but v11e21v12e17v9e18v13e22v12e17v9e18v13. is not. If the walk contains
no repeated vertices, except possibly the initial and terminal, then the walk is sim-
ple. v1e1v2e4v6e9v8e11v7e10v6e8v9 is not simple, since v6 occurs twice. Its subpathsimple

v8e11v7e10v6e8v9 is simple.
If v = w (that is, the initial and terminal vertices are the same), then the walk

406



CHAPTER 8. GRAPH 8.3. STROLLING ABOUT A GRAPH

is closed . A circuit is a closed path. A cycle is a simple circuit. In the earlier closed

circuit

cycle

example, v6e9v8e11v7e12v10e16v8e15v9e8v6 is a circuit, but not a cycle, since v8 is
repeated. v2e4v6e8v9e17v12e7v2 is a cycle.
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Circuit Cycle

Proofs of graph theoretical propositions can get messy. They involve a lot of
notation with edges and vertices. Paths can be annoying to reason about since they
are written as sequences of subscripted v’s and e’s. To relieve some of the pain,
we’ll allow graph theory proofs to be a little less formal. Things like substitution
and rules of arithmetic and algebra may be used uncited, for example. This should
allow us to focus on the core of the proof. Consider this one:

Theorem 8.3 If G = (V� E) is a connected graph and for all v ∈ V , deg(v) = 2,
then G is a cycle.

The important thing to think about is what is the burden of this proposition?
In other words, what do we need to show? Identifying that will be an exercise in
applying the definitions listed above, and it will give us a road map through the
actual proof.

First of all, what we need to show is that G is a cycle. That means G has a
cycle which happens to be all of G. This is our first step to unravelling what needs
to be shown— it’s a proof of existence. We must show there exists a cycle in G that
comprises all of G.

Now, what’s a cycle? It’s a simple circuit. Simple means it has no repeated
internal vertices. What’s a circuit? It’s a closed path. Closed means it has the
same initial and terminal vertex. A path is a walk with no repeated edges.

So, here’s our proof outline or strategy: 1. Construct a walk. 2. Show that the
walk has no repeated edges (so it’s a path) 3. Show that it has the same first and
last vertex (so it’s closed—and it’s also a circuit) 4. Show that it has no repeated
internal vertices (so it’s simple—and it’s also a cycle) 5. Show that every vertex
and edge in G is this cycle.
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Now, why is this proposition true? Let’s draw a picture of a connected graph, all

of whose vertices are 2.

This theorem is almost obvious now. All we need to do is pick any vertex to
begin with, and travel out by any edge. For ever vertex we get to, we just leave by
the edge other than the one we entered.

start here

Don’t let this reasoning by example blind you to one special case:

Ready to prove?

Proof. Suppose G = (V� E) is a connected graph and for all v ∈ V ,
deg(v) = 2. First suppose |V | = 1, that is, there is only one vertex, v.
Since deg(v) = 2, this implies that there is only one edge, e = (v� v).
Then the cycle vev comprises the entire graph.

This looks like the beginning of a proof by induction, but actually it is a traditional
division into cases. We are merely getting a special case out of the way. We want to
use the fact that there can be no self-loops, but that is true only if there are more
than one vertex.

Next suppose |V | > 1. By the exercise below, G has no self-loops.

We’ll leave that part for you.

Then construct a walk c in this manner: Pick a vertex v1 ∈ V and an
edge e1 = (v1� v2). Since deg(v1) = 2, e must exist, and since G contains
no self-loops, v1 �= v2.
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Continue this process until we reach a vertex already visited, so that we
can write c = v1e1e2v3 . . . ex−1vx where vx = vi for some i, 1 ≤ i < x.
We will reach such a vertex eventually because V is finite.

Only one vertex in c is repeated, since reaching a vertex for the second
time stops the building process. Hence c is simple.

Since we never repeat a vertex (until the last), each edge chosen leads
to a new vertex, hence no edge is repeated in c, so c is a path.

We are always choosing the edge other than the one we took into a
vertex, so i �= x− 1.

Suppose i �= 1. Since no other vertex is repeated, vi−1, vi+1, and vx−1

are distinct. Therefore, distinct edges (vi−1� vi), (vi� vi+1), and (vx−1� vi)
all exist, and so deg(vi) ≥ 3. Since deg(vi) = 2, this is a contradiction.
Hence i = 1. Moreover, v1 = vx and c is closed.

As a closed, simple path, c is a cycle.

Suppose that a vertex v ∈ V is not in c, and let v� be any vertex in c.
Since G is connected, there must be a walk, c� from v to v�, and let edge
e� be the first edge in c� (starting from v�) that is not in c, and let v��

409



8.3. STROLLING ABOUT A GRAPH CHAPTER 8. GRAPH

be an endpoint in c� in c. Since two edges incident on v�� occur in c,
accounting for e� means that deg(v��) ≥ 3. Since deg(vi) = 2, this is a
contradiction. Hence there is no vertex not in c.

Suppose that an edge e ∈ E is not in c, and let v be an endpoint of
e. Since v is in the cycle, there exist distinct edges e1 and e2 in c that
are incident on v, implying deg(v) ≥ 3. Since deg(v) = 2, this is a
contradiction. Hence there is no edge not in c.

Therefore, c is a cycle that comprises the entire graph, and G is a cycle.
�

Leonhard Euler proposed a problem based on the bridges in the town of Königs-
berg, Prussia (now Kaliningrad, Russia). Two branches in of the Pregel River
converge in the town, delineating it into a north part, a south part, an east part,
and an island in the middle, as shown below. In Euler’s time, the east part had one
bridge to each the north part and the south part, the island had two bridges each
to the north part and the south part, and one bridge connected the east part and
the island. Supposing your house was in any of the four parts, is it possible to walk
around town (beginning and ending at your house) and cross every bridge exactly
once?

To the left is an arial view from Google maps of modern
Kaliningrad showing some of the bridges still in approxi-
mately the same spot as in the eighteenth century, but the
locations of two older, no longer extant, bridges indicated
and a newer bridge exed out. Above is a more abstract
map and a graph representation.

We can turn this into a graph problem by representing the information with a
graph whose vertices stand for the parts of town and whose edges stand for the
bridges, as displayed above. Let G = (V� E) be a graph. An Euler circuit of G isEuler circuit

a circuit that contains every vertex and every edge. (Since it is a circuit, this also
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means that an Euler circuit contains very edge exactly once. Vertices, however, may
be repeated.) The question now is whether or not this graph has an Euler circuit.
We can prove that it does not, and so such a stroll about town is impossible.

Theorem 8.4 If a graph G = (V� E) has an Euler circuit, then every vertex of G

has an even degree.

Proof. (To be done in class.)

The northern, eastern, and southern parts of town each have odd degrees, so by
the contrapositive of this theorem, no Euler circuit around town exists.

Another interesting case is that of a Hamiltonian cycle, which for a graph G = Hamiltonian cycle

(V� E) is a cycle that includes every vertex in V . Since it is a cycle, this means that
no vertex or edge is repeated; however, not all the edges need to be included. Here
is a Hamiltonian cycle in a graph similar to the one at the beginning of this chapter
(with the disconnected subgraph removed).
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Here is a summary of the terms in this section, first adjectives that apply to
walk and nouns that are various kinds of walks.

Adjectives

Trivial Having only one vertex and no edges.
Simple Having no repleated vertices (except, possibly, the initial and ter-

minal).
Closed Having the same vertex as initial and terminal.
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Nouns

Walk An alternating sequence of vertices and edges, each edge coming
between its end points.

Path A walk with no repeated edge (repeated vertices are ok).
Subpath A path that is part of another path.
Circuit A closed path (no repeated edges, initial and terminal the same)
Cycle A simple circuit (no repeated edges or vertices, except the initial

and terminal, which are the same)
Euler circuit A circuit containing every vertex and every edge (repeated vertices

are still ok).
Hamiltonian cycle A cycle containing every vertex (still no repeated edges or vertices;

missing edges are ok).

Exercises

8.3.1 Draw a graph that has a simple walk that is not a
path.

Prove. Assume G = (V� E) is a graph.

8.3.2 If G is connected, then |E| ≥ |V | − 1.

8.3.3 If G is connected, |V | ≥ 2, and |V | > |E|, then G

has a vertex of degree 1.

8.3.4 If G is not connected, then G is connected.

8.3.5 If G is connected, for all v ∈ V , deg(v) = 2, and
|V | > 1, then G has no self-loops.

8.3.6 Every circuit in G contains a subwalk that is a cy-
cle.

8.3.7 If for all v ∈ V , deg(v) ≥ 2, then G contains a cycle.

8.3.8 If v� w ∈ V are part of a circuit c and G� is a sub-
graph of G formed by removing one edge of c, then
there exists a path from v to w in G�.

8.3.9 If G has no cycles, then it has a vertex of degree 0
or 1.

8.3.10 If G has an Euler circuit, then it is connected.

8.3.11 Find a Hamiltonian cycle in the following graph
(copy it and highlight the walk on your copy).

8.3.12 If G has a non-trivial Hamiltonian cycle, then G

has a subgraph G� = (V �� E�) such that

• G� contains every vertex of G (V � = V )

• G� is connected,

• G� has the same number of edges as vertices
(|V �| = |E�|), and

• every vertex of G� has degree 2.

8.3.13 Reinterpret the Königsburg bridges problem by
making a graph whose vertices represent the bridges
and whose edges represent land connections be-
tween bridges. What problem are you solving
now?
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