
Chapter 12

Group

12.1 Binary operations

A closed binary operation on a set A is a function from A× A to A. The modifier binary operation

closed indicates that every pair of elements in A maps to another element of A, as
closedopposed to being undefined. This, of course, is required for it to be a function.

There are loads of examples of binary operations:

• +, ·, and − on R, Q, and Z.

• ∪, ∩, and − on the powerset of any set.

• ∧ and ∨ on any lattice.

• Matrix multiplication on n× n matrices.

• Concatenation on strings.

÷ is not closed on R, Q or Z because division by zero is not defined. ÷ is closed,
however, on R− {0} and Q− {0}. It is still not closed on Z− {0}, though.

We will use the symbol ∗ to denote a generic binary operation. (· will be for plain
old arithmetic multiplication, and × for cartesian product.) We know a variety of
properties that binary operations may or may not have:

• Commutativity. ∀ a, b ∈ A, a∗b = b∗a. + on Z is commutative, concatenation
on strings is not.

• Associativity. ∀ a, b, c ∈ A, (a ∗ b) ∗ c = a ∗ (b ∗ c). Concatenation on strings
is associative, − on R is not.

• Idempotency. ∀ a ∈ A, a ∗ a = a. ∪ on a powerset is idempotent, · on Q is
not.
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12.2 Semigroups

We have a special name for a set with an associative binary operation: semigroup.semigroup

The odd name is because it’s a generalization of the idea of a group, which gets the
top billing. Here’s a diverse handful of examples (most selected from the previous
list):

• For a set A, P(A) with ∪

• Any lattice with ∨

• For a set A, the set of functions {f : A → A} with ◦ (composition).

• Z with +.

• For an alphabet A, the set of strings on A with concatenation.

Many semigroups (say, A with ∗) have a distinguished element e with the prop-
erty that

∀ a ∈ A, a ∗ e = e ∗ a = a

We call such an element an identity . A semigroup that has an identity is calledidentity

a monoid , but we won’t use that term very often. Not all semigroups have an
monoid identity, but all of the examples above do; respectively: ∅, ⊥, f(x) = x (by freakish

coincidence called the “identity function”), 0, and ε (that is, the empty string).
Note that if we take the set Z+ with +, we still have a semigroup, but it no

longer has an identity. Note also that on number sets with multiplication, 1 is the
identity. By the way, should we say the identity or an identity? I suppose we should
say an until we prove that

Theorem 12.1 If A with ∗ is a semigroup, then e, if it exists, is unique.

Proof Suppose A with ∗ is a semigroup, and suppose further that e
and e� are both identities. Then by definition of identity, e ∗ e� = e and
e ∗ e� = e�. By substitution, e = e�. �

Now we can (and should) say the.

12.3 Homomorphisms

Let A and A� be semigroups with ∗ and ∗�, respectively. Let φ be a function A → A�.
We say that φ is a homomorphism if for all a, b ∈ A, φ(a ∗ b) = φ(a) ∗� φ(b).homomorphism

For example, take the sets {1, 2, 3} and {1, 2}. Define φ : P({1, 2, 3}) →
P({1, 2}) so that
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φ(X) = X − {3}

So, for instance, φ({1, 3}) = {1} and φ({1, 2}) = {1, 2}. Notice

φ({1, 3} ∪ {1, 2}) = φ({1, 2, 3})
= {1, 2}
= {1} ∪ {1, 2}
= φ({1, 3}) ∪ φ({1, 2})

This makes it look like φ is a homomorphism, and you can probably do a quick
proof of this in your head.

What’s the difference between a homomorphism and an isomorphism? That
thing about “φ(a∗b) = φ(a)∗�φ(b)” is the structure-preserving (iso)morphic property
for semigroups, analogous to the ones we’ve seen for graphs and lattices, but a
homomorphism doesn’t need to be a one-to-one correspondence. In the example
above, φ isn’t: φ(3) = ∅ = φ(∅). A homomorphism lets us preserve the structure of
a semigroup even though we compress it into another semigroup that’s truly smaller
than the first.

Just as with groups verses semigroups, isomorphisms get top billing rather than
homomorphisms. But when we prove properties of isomorphisms in the coming two
weeks, make sure you take note of whether or not your proof relies on the fact the
the ’morphism is one-to-one. If it doesn’t, then the result is true for homomorphisms
as well as for isomorphisms. For example:

Theorem 12.2 Let A with ∗ and A� with ∗� be monoids with identities e and e�,
respectively and φ be an isomorphism from A to A�. Then φ(e) = e�

Proof. Suppose the first sentence. Suppose further that b ∈ A�. Since
φ is onto, there exists an a ∈ A such that φ(a) = b. Now,

φ(e) ∗� b = φ(e) ∗� φ(a) by substitution
= φ(e ∗ a) by the (iso)morphic property
= φ(a) by the definition of identity
= b by substitution again

Similarly b ∗� φ(e) = b. Therefore, by definition of identity and the face
that identities are unique, φ(e) = e�. �

Did we use the fact that φ was a one-to-one correspondence? Well, we used
onto, but not one-to-one. So, we can say, more generally,

Corollary 12.1 Let A with ∗ and A� with ∗� be monoids with identities e and e�,
respectively and φ be an onto homomorphism from A to A�. Then φ(e) = e�

Note that our earlier example, though not an isomorphism, was an onto homo-
morphism.
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