
CHAPTER 12. GROUP 12.9. AN EXAMPLE, U(N)

12.9 An example, U(n)

Let U(n) be the set of all positive integers less than n and relatively prime to n.
For examples, U(5) = {1, 2, 3, 4} and U(8) = {1, 3, 5, 7}. (Notice that we consider 1
to be relatively prime to anything.)

Theorem 12.3 For n ∈ Z+, U(n) with multiplication modulo n is a group.

Let’s take U(8).

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Looks closed. Everything has an inverse (itself in this case, but not always; try
U(5) on your own). 1’s the identity. We already know multiplication is associative.
Let’s prove it.

Proof. As mentioned already, we know that multiplication is associative
and that 1 will be the identity for any kind of multiplication. We need
to prove closure and inverses.

Suppose a, b ∈ U(n). The quotient-remainder theorem tells us that there
exist q, r ∈ Z+ such that a ·b = n ·q+r, where 0 < r ≤ n. The definition
of modular arithmetic says that a · b mod n = r. What we need to show
is that r is relatively prime with n.

Suppose r is not relatively prime with n. That means there exists an
x ∈ Z+ such that x is a common factor of r and n (ie, x|r and x|n).
That would mean x|(n · q+ r), and hence x|(a · b). Then x is a factor of
either a or b, and thus either a or b is not relatively prime with n; either
a /∈ U(n) or b /∈ U(n). Contradiction. Hence r is relatively prime with
n, and multiplication mod n is closed on U(n).

Showing inverses is a bit more complicated. First, a lemma:

Lemma 12.1 If a, b, c ∈ U(n) and b �= c, then a ∗ b �= a ∗ c.

Proof (of lemma). Suppose a, b, c ∈ U(n) and b �= c. (Notice
that it could be that a = b or a = c.)

Suppose further that (a·b) mod n = (a·c) mod n. Then there
exist q1, q2, and r such that a ·b = q1 ·n+r and a ·c = q2 ·n+r.

Say (without loss of generality) b is the greater of the two, i.e.,
b > c. Then we can subtract equations
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a · b = q1 · n+ r
− a · c = q2 · n+ r

a · (b− c) = (q1 − q2) · n

Since a is relatively prime with n, a can’t divide n, so it must
divide q1 − q2. Now, solving for b:

b =
q1 − q2

a
· n+ c

Since we said a|(q1 − q2), then
q1−q2

a > 1, and so b > n. This
is a contradiction because we assumed b ∈ U(n). �

What this lemma says is that given a ∈ U(n), every element in U(n) must
take a to something different. This further means that for every element
in U(n), something must take a to it, simply because otherwise we’d run
out of elements (technically, this uses what’s called “The Pigeonhole
Principle”). This has to include 1, the identity, therefore a’s inverse
must exist in U(n).

This accounts for all the requirements for U(n) to be a group. �

If you’re frustrated by that proof, especially the part about inverses, it might be
because we didn’t actually tell how to find the inverse of a given a, we just said it
had to exist. (In CS 243 terms, it’s like proving there exists a unicorn by showing
it’s impossible for a unicorn not to exist, as opposed to brining a unicorn into the
room.) There are other proofs of this theorem out there (mostly using stuff we
haven’t covered), but I don’t know of a constructive one.

12.10 Cyclic subgroups

Suppose A with ∗ is a group, and a inA. Let �a� be the set {an | n ∈ Z} For
example, if the group is Q with addition and a = 1
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If it so happens that A = �a� for some a, then A is called a cyclic group and a iscyclic group

called the generator of A. For example, 1 is the generator of Z with addition. It’s
generator possible that a cyclic group has more than one generator.
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12.11 Permutations

In combinatorics, we think of a permutation of a set as simply a (re)arrangement
of the elements in the set. It’s like a way to shuffle the cards. Thus, for the set
{1, 2, 3, 4}, the permutations are

1, 2, 3, 4 1, 2, 4, 3 1, 3, 2, 4 1, 3, 4, 2 1, 4, 3, 2 1, 4, 2, 3
2, 1, 3, 4 2, 1, 4, 3 2, 3, 1, 4 2, 3, 4, 1 2, 4, 1, 3 2, 4, 3, 1
3, 1, 2, 4 3, 1, 4, 2 3, 2, 1, 4 3, 2, 4, 1 3, 4, 1, 2 3, 4, 2, 1
4, 1, 2, 3 4, 1, 3, 2 4, 2, 1, 3 4, 2, 3, 1 4, 3, 1, 2 4, 3, 2, 1

But we’re going to forge a new definition. We’ll say that a permutation of a set permutation

A is a one-to-one correspondence from A to A.
What fellowship does that definition have with our intuitive understanding of

permutations? Well, consider an example. Let’s define the following one-to-one
correspondence, α, on {1, 2, 3, 4}:

x α(x)
1 2
2 1
3 3
4 4

Looks just like one of the “permutations” we listed above. Moreover, if we
extend our notion of α so that it can be applied to lists of elements of A (sort of
like the image of a set under a function, except the elements or ordered; more like
the map function in ML), then

α([1, 2, 3, 4]) = [2, 1, 3, 4]

There’s a standard matrix-looking way to represent a permutation. The one
above (α) would be written

�
1 2 3 4
2 1 3 4

�

Read that by finding the input on top and the corresponding output on the
bottom: 1 maps to 2, 2 maps to 1, 3 maps to 3, 4 maps to 4. We also have a ready
binary operation to apply to permutations: function composition. Let β be the
permutation listed originally as 3, 4, 1, 2. Then

α ◦ β =

�
1 2 3 4
2 1 3 4

�

◦

�
1 2 3 4
3 4 1 2

�

=

�
1 2 3 4
3 4 2 1

�

To get your mind around this, you need to read from right to left. What is
α ◦ β(1)? Well, we feed 1 into β , which gets 3; feed 3 into α, and we still get 3.
Hence α ◦ β(1) = 3.

445



12.11. PERMUTATIONS CHAPTER 12. GROUP

A set of permutations that forms a group under function composition is called
a permutation group. We’ve already seen one: Think about the rotations andpermutation group

symmetries of an equilateral triangle–they’re just permutations of ways to list the
corners, say, going clockwise from the top.
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