
CHAPTER 6. FUNCTION 6.12. MODELLING FUNCTIONS

6.12 Extended example: Modelling mathematical
functions

Prior to this course, you probably associated function most readily with the real-
valued functions from algebra and calculus. In this course, functions are a crucial
element to ML programming, and they are way to reason about any sets. In this
section we take up the topic of modelling real-valued functions in ML. This section
requires a semester or so of calculus.
Obviously we can model mathematical functions with plain old ML functions.

However, there are some operations we would like to perform on real functions—
differentiation and integration, for example. For this reason we might seek other
ways to model real functions.
Start with the most familiar, polynomial functions. A polynomial in x is a sum

of terms with each term being x raised to a whole number power and multiplied by
a real number coefficient. Formally, a polynomial in x of degree n has the form

n�

i=0

ci · x
i

for some real numbers c0, c1, . . . cn. For example

6x4 + 2x3 + 0x2 + 12x1 + 8x0

Of course, we would normally write that as

6x4 + 2x3 + 12x + 8

What information do we need to store in order to model a polynomial function?
It is as simple as a list of coefficients. All other information—the degree, the
exponents on the individual terms—can be inferred from the structure, as long as
we have reasonable assumptions about that structure. In our case, we will assume
that all coefficients (up to the highest-degree term with non-zero coefficient) is
present in the list, arranged from highest degree to zero degree.

- [6, 2, 0, 12, 8];

val it = [6,2,0,12,8] : int list

The simplest operation is to evaluate this function at some given x value. Instead
of evaluating it in a brute-force method involving many exponentiations, we will use
a more efficient approach known as Horner’s rule:

n�

i=0

ci · x
i = (c0 + x · (. . . x · (cn−2 + x · (cn−1 + x · cn)) . . .))

341

6.12. MODELLING FUNCTIONS CHAPTER 6. FUNCTION

Read it this way: cn is our starting value. The first step is to multiply by x, and
then we add cn−1. That is our next “value so far.” Going on from highest degree
coefficient to lowest, we multiply our value so far by x and add the next coefficient.
We can implement this using foldl. The seed value is 0, and the supplied function
takes the next coefficient and the accumulated answer.

- fun evaluatePoly(coeffs, x) = foldl(fn(c, y) => c + y * x,

= 0.0, coeffs);

val evaluatePoly = fn : real list * real -> real

- evaluatePoly([6.0, 2.0, 0.0, 12.0, 8.0], 4.5);

val it = 2704.625 : real

Computing the derivative of a polynomial is also reasonably easy.

d

dx

n�

i=0

ci · x
i =

n�

i=1

i · ci · x
i−1

In our case,

d

dx
(6x4 + 2x3 + 12x + 8) = 24x3 + 6x2 + 12

What change would need to be computed from the list [6.0, 2.0, 0.0, 12.0,

8.0]? The list standing for the derivative would need to be one element shorter,
specifically the last element would be removed. 12.0 would stay the same, but the
other elements would need to be multiplied by factors 2, 3, 4, from back to front.
Clearly the process we are describing needs to be computed starting at the end

of the list and working our way forward. In terms of recursion, this means the rest
of the list would need to be processed first, then the current element. But to process
the current element, we would need to know how many elements there are in the
rest of the list, in order to know the factor for the current element. To handle this,
we could have the function return two things: not only the transformed list, but
also the factor for the next element.

- fun differentiatePoly([c]) = ([], 0)

= | differentiatePoly(c::rest) =

= let val (diffRest, degree) = differentiatePoly(rest)

= in (real(degree) * c ::diffRest,

= degree + 1)

= end;

Warning: match nonexhaustive

val differentiatePoly = fn : real list -> real list * int

342

CHAPTER 6. FUNCTION 6.12. MODELLING FUNCTIONS

Alternately, we could use foldr (see Exercise 6.5.7). Often we will find that
using of functions like map, foldl, and foldr will make our functions shorter,
though less readable (unless you are used to thinking in terms of these functions).
This time it does not make our program shorter, but it does eliminate the match-
nonexhaustive warning and make it so the final answer is just the derivative, not a
derivative/next-degree tuple.

- fun differentiatePoly(coeffs) =

= #1(foldr(fn(c, (derivCoeffs, degree)) =>

= (if degree = 0

= then []

= else real(degree) * c::derivCoeffs,

= degree + 1),

= ([], 0), coeffs));

val differentiatePoly = fn : real list -> real list

- differentiatePoly([6.0, 2.0, 0.0, 12.0, 8.0]);

val it = [24.0,6.0,0.0,12.0] : real list

The function indefIntegratePoly, to compute the coefficients of a polynomial
that is an indefinite integral of a given polynomial, is left for an exercise. Once
computed, we can use it to compute a definite integral:

- fun defIntegratePoly(coeffs, min, max) =

= let val indefIntegral = indefIntegratePoly(coeffs)

= in evaluatePoly(indefIntegral, max) -

= evaluatePoly(indefIntegral, min) end;

val defIntegratePoly = fn : real list * real * real -> real

However, our original goal was to model mathematical functions, not just the
restricted class of polynomials. Different kinds of real functions would require differ-
ent data storage, and the operations of evaluation, differentiation, and integration
would be defined differently. Moreover, we would like to be able to use values of
these different kinds of functions uniformly. In other words, we want a type function
that all the kinds of functions will fit into.
Consider two other kinds of functions: Exponential functions in the form c · ex

for some constant c, and step functions, defined for a given step point v and step
level c to be

f(x) =

�
0 if x < v
c otherwise

343

6.12. MODELLING FUNCTIONS CHAPTER 6. FUNCTION

If we take our usual approach of representing information with datatypes pro-
cessed by functions with pattern-matching, we might come up with the following.
(Real.Math.exp is a library function that computes powers of e.)

- datatype function =

= Poly of real list | Exp of real | Step of real * real;

- fun evaluate(Poly(coeffs), x) =

= foldl(fn(c, y) => c + - y * x, 0.0, coeffs)

= | evaluate(Exp(c), x) =

= c * Real.Math.exp(x)

= | evaluate(Step(v, c), x) =

= if x < v then 0.0 else c;

val evaluate = fn : function * real -> real

We want to take a different approach on this problem for two reasons. First
is extensibility. The old way of making datatypes does not allow us to add newextensibility

varieties of functions later, at least not without rewriting the old code. The second
reason is data hiding. Code where data and operations are available to the rest ofdata hiding

the program only on a “need to know” basis is less error-prone and easier to modify
because the code is less dependent on the details of other parts of the code.
In our current example, suppose that our system of real functions is to be used

by another system, say one that draws graphs of functions or does some sort of
data analysis. The system using ours (the client system) should be able to work
with functions of any kind uniformly—without knowing what kind of function it is
or how the information for that kind of function is stored. That way changes to
the implementation of the functions can be made, including making new kinds of
functions, without any change needing to be made to the client system.
The way to achieve this independence (referred to as loose coupling betweenloose coupling

parts of code) is to have the different parts of the code interact through stable
and clearly defined operations. In our case, the available operations are evalua-
tion, finding the derivative, and computing a definite integral. (It might seem more
fundamental to make indefinite integration an available operation, since a definite
integral always can be computed from an indefinite integral. We chose the defi-
nite integral instead of the indefinite integral because for many kinds of functions
the indefinite integral is hard to find; in those cases we will compute a numerical
approximation of the definite integral.)
Here we define the type function in terms of its interface, that is, the types ofinterface

its available operations:

- datatype function = Func of

= (real -> real) * (unit -> function) * (real * real -> real);

344

CHAPTER 6. FUNCTION 6.12. MODELLING FUNCTIONS

How then do we make values of this type? We write (ML) functions that will
take the necessary information for a kind of (real) function (say, a list of coefficients
for a polynomial), make appropriate (anonymous ML) functions, and return a value
of type function.

- fun makePolynomial(coeffs) =

= Func ((* Evaluate *)

= fn (x) => foldl(fn(c,y) => c + y * x, 0.0, coeffs),

= (* Find derivative *)

= fn () => makePolynomial(#1(foldr(

= fn(c, (derivCoeffs, degree)) =>

= (if degree = 0

= then []

= else real(degree)*c::derivCoeffs,

= degree + 1),

= ([], 0), coeffs))),

= (* Compute definite integral *)

= fn (min, max) =>

= let val Func(evaluateIntegral, _, _) =

= makePolynomial(indefIntegratePoly(coeffs));

= in evaluateIntegral(max) - evaluateIntegral(min)

= end);

val makePolynomial = fn : real list -> function

This code is plenty complicated, so digest it carefully. The evaluate function is
straightforward. The function for making a derivative contains our earlier code for
differentiatePoly to make the coefficient list for the derivative. However, we no
longer can return a real list—we need a value of our new function type. Accordingly,
we feed that real list into a recursive call to makePolynomial, which will make the
appropriate three operations for that new polynomial.
The function for the definite integral is similar but more complicated. As with

the differentiation function (and our earlier function for integrating polynomials),
we first make the indefinite integral. (We call indefIntegratePoly rather than put
the code there directly so as not to spoil Project 6.C.) In the function returned from
the recursive call to makePolynomial, the only component function we care about
is the evaluate function, which we name evaluateIntegral. Finally, we compute
the definite integral by evaluating the indefinite integral at the endpoints of the
range and subtracting.
(These “recursive calls” to makePolynomial do not seem to have a base case.

Why do we not have infinite recursion? Because those calls are not made by
makePolynomial itself, but by the functions that makePolynomial returns, which
in turn will not be called until after makePolynomial returns. Although makePo-

lynomial is self-referential, it is not recursive in the conventional sense. It does not
call itself. It merely makes functions that call it.)

345

6.12. MODELLING FUNCTIONS CHAPTER 6. FUNCTION

Consider how to make a step function. Its derivative is the constant function 0,
which is a special case of polynomial (we ignore the fact that the function is not
differentiable at the the step point). Integration is just a matter of computing the
area of a rectangle, but it depends on whether the step point falls after the max,
before the min, or between the min and max. (If the min is greater than the max,
switch them and return the opposite.)

- fun makeStep(stepPoint, stepLevel) =

= Func (fn (x) => if x < stepPoint then 0.0 else stepLevel,

= fn () => makePolynomial([0]),

= fn (min, max) =>

= let val (rmin, rmax, sign) =

= if min <= max then (min, max, 1.0)

= else (max, min, ~1.0)

= in sign * (if max < stepPoint then 0.0

= else if min > stepPoint

= then stepLevel * (max - min)

= else stepLevel * (max - stepPoint))

= end);

Finally, we write a function to make exponential functions. You may have
guessed that this kind of function was chosen as an example because of how easy
the derivative and integral are.

- fun makeExponential(coefficient) =

= Func (fn (x) => coefficient * Real.Math.exp(x),

= fn () => makeExponential(coefficient),

= fn (min, max) =>

= coefficient * (Real.Math.exp(max) -

= Real.Math.exp(min)));

Students with experience in object-oriented programming such as in Java will
recognize what we are doing in this chapter. The datatype function is equivalent to a
Java interface, and the kinds of functions would be implemented in Java by classes
that implement that interface. The functions makePolynomial, makeStep, and
makeExponential stand in for classes (or constructors for those classes, depending
on how you look at it). In particular, in a language like Java the body of the
derivative function of makeExponential would be replaced by this.

346

CHAPTER 6. FUNCTION 6.13. COUNTABILITY

Project

6.A Rewrite evaluatePoly to use “brute force” (not
Horner’s rule) in computing the value of a poly-
nomial function for a given x. That is, given
3x2 − 2x + 3, start with 0 as a running sum. Then
add 3. Then compute −2x and add, then com-
pute 3x2 and add. Use foldr. It is not necessary
to compute the powers of x directly (such as us-
ing Math.pow). Instead, the anonymous function
passed to foldr should return two things: the “an-
swer so far” and the next or current power of x.
That way each step requires only two multiplica-
tions (multiplying x by the previous power of x and
multiplying the coefficient by the current power of
x) and an addition, rather than an exponentiation
and an addition.

6.B Write the function indefIntegratePoly which
takes a list of coefficients standing for a polyno-
mial and returns a new list of coefficients standing
for an indefinite integral of that polynomial. Use
foldr.

6.C Write a function secantMethod that takes a func-
tion (our second definition of that type) and re-
turns an ML function to evaluate the given func-
tion’s derivative at a point. The secant method
approximates a derivative at a point by choosing a
nearby point on the (real) function and computing
the slope between those two points. Notice that
the (ML) function you are asked to write does not
return a function but just the evaluate portion of
the derivative (type real →real).

6.D Write a function trapezoidMethod that takes a
function and a min and max value and computes
an approximation of the definite integral of that
function using the trapezoid method. The trape-
zoid method divides the area under the curve of
the function into segments and approximates their
areas with trapezoids.

6.E Write a function makeSum that takes two func-
tions, say f and g, and returns a new function
to stand for the function h(x) = f(x) + g(x).
Recall that d

dx
[f(x) + g(x)] = f�(x) + g�(x) and�

f(x) + g(x) dx =
�
f(x) dx +

�
g(x) dx.

6.F Write a function makeProduct that takes two func-
tions, say f and g, and returns a new function to
stand for the function h(x) = f(x) · g(x). Use the
product rule (and makeSum and makeProduct for dif-
ferentiation and your trapezoidMethod for integra-
tion).

6.G Write a function makeQuotient that takes two func-
tions, say f and g, and returns a new function to
stand for the function h(x) = f(x)/g(x). Use the
quotient rule (and various function-making func-
tions) for differentiation and your trapezoidMethod
for integration.

6.H Write a function makeArbitrary that takes an ML
function (type real →real), assumed to model a
real-valued mathematical function, and returns a
function to model that same mathematical func-
tion. Use secantMethod for differentiation and
trapezoidMethod for integration.

6.13 Special Topic: Countability

Both our informal definition of cardinality in Section 1.13 and the more careful one
in Chapter 6.6 were restricted to finite sets. This was in deference to an unspoken
assumption that the cardinality of a set ought to be something, that is, a whole
number. As has been mentioned already, we cannot merely say that a set like Z has
cardinality infinity. Infinity is not a whole number—or even a number at all, if one
has in mind the number sets N, W, Z, Q, R, and C. The definition of cardinality
taken at face value, however, does not guarantee that the cardinality of a set is
something; it merely inspired us to define what the operator || means by comparing
a set to a subset of N. Indeed, the definition of cardinality merely gives us a way

347

