4.10. UNIFICATION AND RESOLUTION CHAPTER 4. RELATION

logic programming

4.10 FExtended example: Unification and resolu-
tion

Relations are an important way to organize information. They play a central role in
several kinds of databases—information can be queried from collections of relations,
and new information can be deduced.

Suppose we have two sets—a set of people and a set of things—and two relations,
likes from people to things and knows from people to people. We do not know
exhaustively all the tuples in these relations, but suppose we do know at least that
the tuples (Kathy, Cars), (Maisie, Cars), and (Maisie, Oatmeal) are in the relation
likes.

Now suppose we also know some propositions about these particular relations.
For example, anyone who likes cars or likes oatmeal knows Jim, and anyone who
likes cars and likes oatmeal knows Fred. From these facts we would be able to
deduce that Kathy knows Jim and that Maisie knows both Jim and Fred.

In this section we develop a system to model information about a set of relations
and to infer new information about those relations. Setting up the input information
for such a system is called logic programming. The programming language Prolog
is the most widely used language for this style of programming. The system we are
writing is an interpreter of sorts for a very small programming language similar to
Prolog.

To begin, suppose we have two kinds of facts about relations: facts that tell us
a specific tuple in the relation (“Stephanie likes chocolate”), and facts that, using
quantification, tell us about a large set of tuples (“Everyone likes chocolate”). In
addition to facts we have queries, which can take the same two forms. If a query has
the first form (“Does Stephanie like chocolate?”), then the result should be a yes
or no answer; for the second form (“What does Stephanie like?”) a query should
result in a set of things we know fit the query. Suppose, then, this is our set of
facts:

Likes(Kathy, Cars)
Likes(Maisie, Cars)
Likes(Maisie, Oatmeal)
Likes(Stephanie, Michigan)
Likes(z, Chocolate)
Likes(Harvey, x)

Sample queries:
Likes(Maisie, Oatmeal) [Answer: yes]
Likes(Kathy, Oatmeal) [Answer: no]
Likes(Stephanie, x) [Answer: { { ¥=Michigan }, { z=Chocolate } }]
Likes(z, Cars) [Answer: { { z=Harvey }, { t=Kathy }, { x=Maisie } }|

206

CHAPTER 4. RELATION 4.10. UNIFICATION AND RESOLUTION

Notice that for facts variables are implicitly universally quantified—z means
“everything.” In queries, variables range over a truth set.
The main building block in the process by which queries are answered is called
unification. The idea is to take a query and a fact and make them match, if possible, unification
by substituting a constant in one of them for a variable in the other. Consider the
following pairs of sentences. For readability, assume the first is a query and the
second is a fact, but it really does not matter.

Likes(Maisie, Oatmeal), Likes(Maisie, Oatmeal) There are no variables, and this matches immediately.
No substitution is necessary.
Likes(Stephanie, z), Likes(Stephanie, Michigan) These can be unified by substituting Michigan for .

Likes(Stephanie, y), Likes(Maisie, Oatmeal) The constants Stephanie and Maisie are in conflict. No
substitution for variables can fix this.
Likes(Stephanie,), Likes(z, Chocolate) These can be unified by substituting Stephanie for x

and Chocolate for y.

In the last case, this works only because different variables were used. We cannot
unify “Likes(Stephanie, x)” and “Likes(z, Chocolate)”. However, since the name of
a variable does not affect meaning, we can replace any variable with another name
to avoid clashes like this.

Before deriving an algorithm for unification, consider how to represent the in-
formation. Variables and strings can appear in the same place, so they can be
subsumed in the same datatype which we will call atom. A fact contains a string
for the name of the relation and a list of atoms. We do not need a separate type
for queries—they are essentially facts put to a different purpose.

datatype atom = Var of string | Const of string;
datatype fact = Fact of string * atom list;

Some examples:

Fact("Likes", [Const("Kathy"), Const("Cars")]);
Fact("Likes", [Const("Maisie"), Const("Cars")]);
Fact("Likes", [Const("Maisie"), Const("Oatmeal")]);
Fact("Likes", [Const("Stephanie"), Const("Michigan")]);
Fact("Likes", [Var("x"), Const("Chocolate")]);
Fact("Likes", [Const("Harvey"), Const("x")1);

As alluded to earlier, the solution to a unification is a substitution, a set of pairs substitution
associating variables with atoms that can replace them. If no such substitution
exists, then the unification results in a failure. Thus we have the following datatype
to model results of unifications, as well as a function to lookup a variable in a
substitution. Since the first item in each pair must be a variable, we represent it
with a string rather than an atom.

207

4.10. UNIFICATION AND RESOLUTION CHAPTER 4. RELATION

as

datatype substitution = Failure | Sub of (string * atom) list;
exception failedLookup;

fun lookup(v, []) = raise failedLookup
| lookup(v, (w, x)::rest) = if v = w then x else lookup(v, rest);

To unify two facts, we make sure that we are testing the same relation (which
we will call the facts’ operators), and then unify the lists of parameters item by
item, updating our solution substitution as we go. This breaks down to unifying
individual atoms, given a “substitution so far.” We do this with two mutually
recursive functions, unifyAtom and unifyVar.

fun unifyAtom(Const(c), Const(d), subst) =
if ¢ = d then subst else Failure

| unifyAtom(Var(v), y, subst) = unifyVar(v, y, subst)

| unifyAtom(x, Var(w), subst) unifyVar(w, x, subst)

and unifyVar(v, y, s as Sub(subs)) =

(unifyAtom(lookup(v, subs), y, s)

handle failedLookup =>

(case y of
Var(w) => (unifyAtom(Var(v), lookup(w, subs), s)
handle failedLookup =>
if v = w then Failure
else Sub((v, y)::subs))
| Const(s) => Sub((v, Const(s))::subs)))
| unifyVar(_,_,_) = Failure;

This is a tricky piece of code. First, one new bit of ML: The third parameter
to unifyVar is written s as Sub(subs). The as construct allows us to define two
names in one parameter: the variable s to stand for the entire substitution value
and the variable subs to stand for the (string * atom) list component. It gives us
the best of both worlds between parameter names and pattern-matching.

Now for what these functions do. If given two constants, unifyAtom makes sure
they are equal. If given at least one variable, the action is passed off to unifyVar;
notice that the parameter v has type string (the name of a variable) and parameter y
has type atom—it could be either a variable or a constant. If the variable v already
has a replacement in the substitution s, then try to unify that replacement with y.

Instead of first testing if v has a replacement and then retrieving the replacement
if it exists, we optimistically retrieve the replacement and handle an exception if no
replacement exists. Thus the first handle failedLookup clause is for the case that
v has no replacement yet. If that happens, we look at y.

If y is a variable, then do what we did with v: optimistically lookup its replace-
ment and unify. If that fails (another handle failedLookup), then we have two

208

CHAPTER 4. RELATION 4.10. UNIFICATION AND RESOLUTION

variables without replacements. If they are the same variable, that is bad, and we
throw up our hands. If they are not equal, then we add y as a replacement for v to
our substitution. We similarly add to our substitution if y is a constant.

Unifying a list of atoms is more straightforward. We apply unifyAtom on every
pair of items in the two lists, but accumulate the substitution as we go—if the uni-
fication of two atoms results in a new replacement pair, that pair must be included
in the substitution used for the later atoms in the list. If the lists are not of the
same length, then we fail.

fun unifyList(_, _, Failure) = Failure
| unifyList(xFst::xRest, yFst::yRest, subst) =
unifyList(xRest, yRest, unifyAtom(xFst, yFst, subst))
| unifyList([], [], subst) = subst
| unifyList(_, _, _) = Failure;

The main unification function is unifyFact, which checks the operators and
parameter lists.

fun unifyFact(Fact(x0p, xArgs), Fact(yOp, yArgs), subst) =
if xOp = yOp then unifyList(xArgs, yArgs, subst)

else Failure;

Trying these out:

unifyFact(Fact("Likes", [Const("Stephanie"), Var("x")]),
= Fact("Likes", [Const("Stephanie"),
= Const("Michigan")]), Sub([1));

val it = Sub [("x",Const "Michigan")] : substitution

- unifyFact(Fact("Likes", [Const("Stephanie"), Var("x")]),
= Fact("Likes", [Var("y"), Const("Chocolate")]),
= Sub([1));

val it = Sub [("x",Const "Chocolate"),("y",Const "Stephanie")]
: substitution

- unifyFact(Fact("Likes", [Const("Stephanie"), Var("x")]),
= Fact("Likes", [Const("Maisie"),
= Const ("Oatmeal")]), Sub([]));

val it = Failure : substitution

209

4.10. UNIFICATION AND RESOLUTION CHAPTER 4. RELATION

resolution

Unification is just a part of the process we are interested in. We have not yet
addressed how to infer new facts using information like “Everyone who likes cars
or oatmeal knows Jim” and “Everyone who likes cars and oatmeal knows Fred.”
Notice that at their core these are conditionals:

Vx, Likes(x, cars) V Likes(x, oatmeal) — Knows(z, Jim)
Vx, Likes(x, cars) A Likes(z, oatmeal) — Knows(x, Fred)

We will call sentences like these rules, to distinguish them from facts. To stan-
dardize the format, we will specify that the hypothesis of any rule is a conjunction of
facts (the premises) and the hypothesis is a single fact. As before, all variables are
universally quantified. We can handle disjunctions—when we would like to “or” the
premises—Dby splitting them up into several rules. Here is our datatype modeling
rules and some examples.

datatype rule = Rule of fact list * fact;

Rule([Fact("Likes", [Var("x"), Const("Cars")])],
Fact ("Knows", [Var("x"), Const("Jim")]1));
Rule([Fact("Likes", [Var("x"), Const("Oatmeal")])],
Fact ("Knows", [Var("x"), Const("Jim")]));

Rule([Fact("Likes", [Var("x"), Const("Cars")]),
Fact("Likes", [Var("x"), Const("Oatmeal")])],
Fact ("Knows", [Var("x"), Const("Fred")]));

The process of generating new facts from a set of facts and rules is called resolu-
tion. If a fact matches the premise of a rule under a certain substitution, then the
conclusion of the rule is a known fact under that substitution. As we work through
the process of resolution, we will assume a list of facts and rules; a current goal, the
query we are currently trying to prove or find a substitution for; and a substitution
or set of substitutions. As before, the result of a query is a set of substitutions that
make the query true.

We will maintain a list of facts and a list of rules as reference variables in the
system. This way it is easy to add to them, and they do not have to be passed to
the resolution functions.

val factList =
ref [Fact("Likes", [Const("Kathy"), Const("Cars")]),
Fact("Likes", [Const("Maisie"), Const("Cars")]),
Fact("Likes", [Const("Maisie"), Const("Oatmeal")]),
Fact("Likes", [Const("Stephanie"), Const("Michigan")]),
Fact("Likes", [Var("x"), Const("Chocolate")]),
Fact("Likes", [Const("Harvey"), Var("x")1)];

val rulelist =
ref [Rule([Fact("Likes", [Var("x"), Const("Cars")])],

210

CHAPTER 4. RELATION 4.10. UNIFICATION AND RESOLUTION

Fact ("Knows", [Var("x"), Const("Jim")]1)),
Rule([Fact("Likes", [Var("x"), Const("Oatmeal")])],
Fact("Knows", [Var("x"), Const("Jim")])),

Rule([Fact("Likes", [Var("x"), Const("Cars")]),
Fact("Likes", [Var("x"), Const("Oatmeal")])],
Fact ("Knows", [Var("x"), Const("Fred")]))];

Here is how resolution works.

Resolving a goal. Suppose we have a goal to resolve. This may be a sub-goal
produced by the resolve functions themselves, or it may be a query that the user
makes. We also have a substitution generated so far, but it may be easier to
assume for now that the substitution is empty. We find all substitutions (if any) by
resolving using the fact list and concatenate that list of substitutions to those found
by resolving using the rules. These resolution functions are mutually recursive, but
here is what the main resolve function looks like.

and resolve(goal, subst) =
resolveFact(goal, !factList, subst)Q@
resolveRule(goal, !rulelist, subst);

Resolving a goal using facts. The function resolveFact takes a goal, a list
of facts, and a substitution (the replacements found so far). We attempt to unify
the goal with the first fact in the list. If it fails, try the next one. If it succeeds
with a refined substitution, then try the next one anyway, concatenating the refined
substitution with the substitutions found by trying the rest of the list.

Resolving a goal using rules. The function resolveRule takes a goal, a list of
rules, and a substitution. For each rule in the list, we try to unify the goal with the
conclusion. If it matches (with a refined substitution), then the substitution only
works if we can satisfy the premises of the rule. All the premises, then, become
sub-goals which we try to resolve, starting with the substitution that unifies the
goal with the conclusion. Any substitution we find to work from this rule we add
to a list of other substitutions that work, using other rules.

Suppose our goal is “Who does Harvey know?”—that is, Knows(Harvey, z).
Since none of the facts in our list are about the Knows relation, we start looking
at the rules. The first rule has Knows(z, Jim) as a conclusion, and that would
match if it were not for the reuse of variable x. We will rename the variable to get
Knows(z1, Jim), and now the two are unified with substitution { z; = Harvey, z
= Jim }.

This does not mean we have yet found someone Harvey knows. We still need
to prove the premises. Our subgoal is now Likes(Harvey, Cars). More accurately,
our subgoal is Likes(x1, Cars) with substitution { ; = Harvey, = Jim }. Testing
this against the facts, we find that it unifies with Likes(Harvey, x2) (the variable

211

4.10. UNIFICATION AND RESOLUTION CHAPTER 4. RELATION

renamed to be unambiguous), with refined substitution { 1 = Harvey, = Jim, x9
=z } Notice that variables can be associated with other variables in a substitution.
It does imply, of course, that ultimately zo = Harvey.

However, that substitution is not the only answer, nor is that the only route
to that answer. The next rule in the list also has Knows(z1, Jim) as a conclusion,
with Likes(z;, Oatmeal) as the premise. This also can be resolved with the fact
Likes(Harvey, x3).

Finally, the query unifies with the conclusion of the third rule, Knows(xy, Fred).
The substitution is { ; = Harvey, z = Fred }. Now we have a list of two sub-goals:
Likes(z1, Oatmeal) and Likes(z1, Cars). It is important to note that both variables
are r1—that is, we already have a value for them in the substitution. We need to
satisfy both of them.

As we have seen, we can resolve Likes(x;, Oatmeal) with this substitution by
unifying with Likes(Harvey, 2). Our substitution is now { 1 = Harvey, = Jim,
x2 = Oatmeal }, and we need to use this substitution when resolving for the other
subgoal. It can be resolved by unifying with Likes(Harvey, x3)—same fact as before,
but with a fresh variable. The final substitution in this case is { z; = Harvey, z =
Jim, 29 = Oatmeal, z3 = Cars }.

Two observations in particular with all this. First, to do any of this, we need
to be able to take a fact or rule and give the variables fresh, unique names. As
an easy naming scheme, we will append each variable name with a unique number.
The mechanism for doing this is a reference variable idGen to keep track of the last
number used and a function makeUnique:

val idGen = ref O;

fun makeUnique(v) = (idGen := !idGen + 1;
v ~ Int.toString(!idGen));

Making all the variables unique in parts of our data representation is handled
by functions standardizeFact, standardizeRule, and others. The algorithm for
doing this is simple but tedious. The code can be found on the accompanying
website.

The second observation involves how we resolve lists of goals. Given a list of goals
and a single substitution, we try to resolve the first goal. Remember that resolve
returns a list of substitutions that work. If that list is empty, everything fails (for
the original given substitution). If it is not empty, then we need to check every
other goal in the list with every substitution and concatenate the results together.
This function is part of the process:

and resolveSubstList(goals, []) = []
| resolveSubstList(goals, subst::rest) =
resolveGoalList(goals, subst)@resolveSubstList(goals, rest)

212

CHAPTER 4. RELATION 4.10. UNIFICATION AND RESOLUTION

As a final step, we provide a few functions to make the system easier to use. We
want functions that allow the user to tell the system a new fact or rule and to ask
the system a query. The tell functions are easy:

fun tellFact(fact)
fun tellRule(rule)

factlList := fact::!factList;
rulelist := rule::!rulelist;

The result should be printed in a readable format. The result is a a list of sub-
stitutions, and these substitutions include variables that the user does not need to
know about. We want to display the ultimate replacement for each of the variables
in the original query.

fun deepLookup(v, subs) =
case lookup(v, subs) of
Const(c) => ¢
| Var(vv) => deepLookup(vv, subs);

fun getVars([]) = []
| getVars(Const(c)::rest) = getVars(rest)
| getVars(Var(v)::rest) = v::getVars(rest);

fun printResult([], _) = print(";\n")
| printResult(_, Failure) = print("fail") (* shouldn’t happen *)
| printResult(x::rest, Sub(subs)) =
(print(x =~ "=" ~ deepLookup(x, subs) =~ " ");
printResult(rest, Sub(subs)));

fun printResults(vars, []) = print(".\n")
| printResults(vars, sub::rest) =
(printResult(vars, sub); printResults(vars, rest));

The function ask puts all this together.

fun ask(Fact(oper, args)) =
let val results = resolve(Fact(oper, args), Sub([]));
val vars = getVars(args);
in if results = [] then print("no\n")
else printResults(vars, results)
end;

Trying it out:
- ask(Fact("Likes", [Const("Maisie"), Var("x")1));

213

4.10. UNIFICATION AND RESOLUTION CHAPTER 4. RELATION

x=Cars ;
x=0atmeal ;
x=Chocolate ;

val it = () : unit

- ask(Fact("Knows", [Const("Harvey"), Var("x")1));

x=Jim ;
x=Jim ;
x=Fred ;

val it = () : unit

More information about the unification and resolutions algorithms can be found
in Harrison [12] and Russell and Norvig [24].

214

CHAPTER 4. RELATION

4.11. REPRESENTING RELATIONS

Project

4.A

4.B

4.C

4.11

Finish the following function to resolve a goal using
a list of facts.

fun resolveFact(goal, fact::rest, subst) =
(case unifyFact(goal,

#1(standardizeFact (fact, [])),

subst) of
Failure => ??
| Sub(s) => 27
| resolveFact(goal, []1, subst) = []

Finish the following function to resolve a goal using
a list of rules.

and resolveRule(goal, r::rest, subst) =
let val Rule(premises, conclus) =
standardizeRule(r)
in

case unifyFact(goal, conclus, subst) of

Failure => ??
| subst2 =>
(case resolveGoalList (premises,
subst2) of
[=> 22
| substs => 27
end
| resolveRule(goal, [], subst) = []

Finish the following function to resolve a list
of goals. This will include a call to function
resolveSubstList.

and resolveGoalList(goal::rest, subst) =
(case 2?7 of
[1 => 27
| substs=> ?2?
| resolveGoalList([], subst) = [subst]

4.D Write improved versions of the tell and ask func-

tions that will parse string input and create appro-
priate datatype values, so the user can enter some-
thing like tell("Likes(Maisie, ML)") instead
of tellFact(Fact("Likes", [Const("Maisie"),
Const("ML")])). Use as a model the parser for the
language system in Section 1.17. Make reasonable
assumptions like all constants begin with a capi-
tal letter and all variables begin with a lowercase
letter.

Make a collection of facts and rules so that you can
use the system to solve the following problem.

Angie, Brad, Casey, Dora, Evert, and Fuchsia are
at a conference. It is lunchtime, and they need to
figure out who can eat with whom at what restau-
rant.

The nearby restaurants are the East Grille,
Bertie’s, the City Tavern, and Fish King. The
East Grille serves hamburgers, tofu, and halibut.
Bertie’s serves hamburgers. The City Tavern
serves hamburgers and tofu. Fish King serves hal-
ibut. Any place that serves hamburgers also serves
French fries. Bertie’s and Fish King have patios.
The City Tavern and Fish King require patrons to
wear shoes, and the East Grille requires (male) pa-
trons to wear ties. Any place that requires ties also
requires shoes.

Angie wants to eat halibut, and Brad wants to eat
French fries. Casey will only eat a place that re-
quires shoes, and he wants to eat tofu. Dora is
more formal and wants only to eat at a place that
requires ties. Evert wants to discuss his research
with Angie and so will eat any place where she will
eat. Fuchsia wants to eat on a patio.

Who can eat with whom, and where? (You do not
need to have a solution to Project 4.D to do this
one, but it would make the input more convenient.)

Special topic: Representing relations

Our initial problem with the relation inSameTimeZone was that it was missing self-
loops. Hence the reflexive closure would have solved our problem just as well as the
transitive closure. Unfortunately, there is no way to compute the reflexive closure

215

