
CS 335 — Software Development

Introduction/Review of Object-Oriented Concepts

Jan 27, 2012



Objects

return 300;

return WHITE;

return Jan 12, 2009;
+ dateProduced(): long

+ calories(): int

+ color(): Color



Objects don’t need classes

typedef int Color;

unsigned long int _dateProduced() { return 862547416; }

Color _color() { return 0; }

int _calories() { return 300; }

struct {
unsigned long int (*dateProduced) ();

Color (*color)();

int (*calories)();

} aWhiteCake = { _dateProduced, _color, _calories };



Several similar objects

return 300;

return WHITE;

return 300;

return WHITE;

return 300;

return WHITE;

return Jan 12, 2009;
+ dateProduced(): long

+ calories(): int

+ color(): Color

+ dateProduced(): long

+ calories(): int

+ color(): Color

return Jan 14, 2009;

return Jan 12, 2008;

+ dateProduced(): long

+ calories(): int

+ color(): Color



Classes

return long;

return WHITE;

return 300;

− date : long

WhiteCakeLayer

+ dateProduced(): long

+ calories(): int

+ color(): Color

class WhiteCakeLayer {
private long date;

public WhiteCakeLayer() {
date = System.currentTimeMillis();

}
public long dateProduced() { return date; }
public Color color() { return Color.WHITE; }
public int calories() { return 300; }

}

“An object’s implementation is defined by its class. The class specifies

the object’s internal data and representation and defines the operations

the object can perform.” DP, pg 14



UML

Scott Adams. c©1995, Universal Features Syndicate



What has changed?

return 300;

return WHITE;

return 300;

return WHITE;

:WhiteCakeLayer

:WhiteCakeLayer

return 300;

return WHITE;

return Jan 12, 2009;
+ dateProduced(): long

+ calories(): int

+ color(): Color

+ dateProduced(): long

+ calories(): int

+ color(): Color

return Jan 14, 2009;

return Jan 12, 2008;

:WhiteCakeLayer

+ dateProduced(): long

+ calories(): int

+ color(): Color



Commonality among classes

class WhiteCakeLayer {
private long date;

public WhiteCakeLayer() {
date =

System.currentTimeMillis();

}
public long dateProduced() {

return date; }
public Color color() {

return Color.WHITE; }
public int calories() {

return 300; }
}

class YellowCakeLayer {
public Color color() {

return Color.YELLOW; }
public int calories() {

return 400; }
}

class ChocolateCakeLayer {
public Color color() {

return Color.BLACK; }
public int calories() {

return 500; }
}

class VelvetCakeLayer {
public Color color() {

return Color.RED; }
public int calories() {

return 450; }
}



Types

“The set of all signatures defined by an object’s operations is
called the interface to the object. An object’s interface
characterizes the complete set of requests that can be sent to the
object. Any request that matches a signature in the object’s
interface may be sent to the object. A type is a name used to
denote a particular interface.”
DP, pg 13

“It’s important to understand the difference between a object’s
class and its type. An object’s class defines how the object is
implemented. The class defines the object’s internal state and the
implementation of its operations. In contrast, an object’s type only
refers to its interface—the set of request to which it can respond.
An object can have many types, and objects of different classes
can have the same type.”
DP, pg 16



Subtyping

CakeLayer

+ color(): Color

+ calories(): int

<<interface>>

WhiteCakeLayer YellowCakeLayer VelvetCakeLayerChocolateCakeLayer



Liskov substitution principle

If for each object o1 of type S, there is an object o2 of
type T such that for all programs P defined in terms of
T , the behavior of P is unchanged when o1 is substituted
for o2, then S is a subtype of T .

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices, 23.5, May 1988.

If a value of type S can be substituted into any context
where a value of type T is expected, then S is a subtype
of T .



Interchangeablility

CakeLayer

+ color(): Color

+ calories(): int

<<interface>>

<<interface>>

<<interface>>

Frosting

Filling

− layer1:CakeLayer
− layer2: CakeLayer
− fill: Filling
− frost: Frosting

+ calories() : int

Cake

+ fill.calories() + frost.calories()

2

WhiteCakeLayer YellowCakeLayer VelvetCakeLayerChocolateCakeLayer

return layer1.calories() + layer2.calories()



Class extension

− layer1:CakeLayer
− layer2: CakeLayer
− fill: Filling
− frost: Frosting

+ calories() : int

+ age() : int

BirthdayCakeWeddingCake

− decoration : Sprinkles

− candles: Candle[]

Cake



Class extension vs. interface implementation

“It’s also important to understand the difference between class
inheritance and interface inheritance (or subtyping). Class
inheritance defines an object’s implementation in terms of another
object’s implementation. In short, it’s a mechanism for code and
representation sharing. In contrast, interface inheritance (or
subtyping) describes when an object can be used in place of
another.
“It’s easy to confuse these two concepts, because many languages
don’t make the distinction explicit.”
DP, pg 17



Inheritance and reuse

“Because inheritance exposes a subclass to details of its parent’s
implementation, it’s often said that ”inheritance breaks
encapsulation.” The implementation of a subclass becomes so
bound up with the implementation of its parent class that any
change in the parent’s implementation will force the subclass to
change.”
DP, pg 19



Two principles

Program to an interface, not an implementation.
DP, pg 18

Favor object composition over class inheritance.
DP, pg 20



Suggestions from Effective Java

I 13: Minimize the accessibility of classes and members.

I 14: In public classes, use accessor methods, not public fields.

I 15: Minimize mutability.

I 16: Favor composition over inheritance.

I 17: Design and document for inheritance or else prohibit it.

I 18: Prefer interfaces to abstract classes

I 19: Use interfaces only to define types.

I 20: Prefer class hierarchies to tagged classes

I 21: Use function objects to represent strategies

I 22: Favor static member classes over nonstatic.

Joshua Bloch, Effective Java, Addison-Wesley, 2008. Pg 67–108


