
CS 365 — Programming Language Concepts

The History of Programming Languages

Jan 11 and 13, 2010

The Lambda Calculus

λm.λn.λz .λs.m(nzs)s

Plankalkül

P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) => R0[:8.0]

max(V0[:8.0],V1[:8.0]) => Z1[:8.0]

max(Z1[:8.0],V2[:8.0]) => R0[:8.0]

END

P2 max (V0[:8.0],V1[:8.0]) => R0[:8.0]

V0[:8.0] => Z1[:8.0]

(Z1[:8.0] < V1[:8.0]) -> V1[:8.0] => Z1[:8.0]

Z1[:8.0] => R0[:8.0]

END

Rojas et al, http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/

Plankalkuel-Report/Plankalkuel-Report.htm

UNIVAC Short Code

X3 = (X1+Y1)/X1*Y1

X3 03 09 X1 07 Y1 02 04 X1 Y1

07Y10204X1Y1

0000X30309X1

http://en.wikipedia.org/wiki/Short Code (Computer language)

FORTRAN

REAL SUM6,SUM7,SUM8,DIF6,DIF7,DIF8,SUMINF

*

OPEN(6,FILE=’PRN’)

SUM6=.9*(1.-0.1**6)/0.9

SUM7=.9*(1.-0.1**7)/0.9

SUM8=.9*(1.-0.1**8)/0.9

SUMINF=0.9/(1.0-0.1)

DIF6 = SUMINF - SUM6

DIF7 = SUMINF - SUM7

DIF8 = SUMINF - SUM8

WRITE(6,*) ’INFINITE SUM = ’, SUMINF

WRITE(6,*) ’SUM6 = ’, SUM6, ’ INFINITE SUM - SUM6 = ’, DIF6

WRITE(6,*) ’SUM7 = ’, SUM7, ’ INFINITE SUM - SUM7 = ’, DIF7

WRITE(6,*) ’SUM8 = ’, SUM8, ’ INFINITE SUM - SUM8 = ’, DIF8

STOP

END

http://www.engin.umd.umich.edu/CIS/course.des/cis400/fortran/Fortran Example2.html

Fortran 77

PROGRAM TPK

REAL A(0:10)

READ (5,*) A

DO 10 I = 10, 0, -1

Y = FUN(A(I))

IF (Y . LT. 400) THEN

WRITE(6,9) I,Y

9 FORMAT(I10. F12.6)

ELSE

WRITE (6,5) I

5 FORMAT(I10,’ TOO LARGE’)

ENDIF

10 CONTINUE

END

REAL FUNCTION FUN(T)

REAL T

FUN = SQRT(ABS(T)) + 5.0*T**3

END

http://www.nsc.liu.se/ boein/f77to90/a7.html

COBOL

000100 ID DIVISION.

000200 PROGRAM-ID. ACCEPT1.

000300 DATA DIVISION.

000400 WORKING-STORAGE SECTION.

000500 01 WS-FIRST-NUMBER PIC 9(3).

000600 01 WS-SECOND-NUMBER PIC 9(3).

000700 01 WS-TOTAL PIC ZZZ9.

000800*

000900 PROCEDURE DIVISION.

001000 0000-MAINLINE.

001100 DISPLAY ’ENTER A NUMBER: ’.

001200 ACCEPT WS-FIRST-NUMBER.

001300*

001400 DISPLAY ’ANOTHER NUMBER: ’.

001500 ACCEPT WS-SECOND-NUMBER.

001600*

001700 COMPUTE WS-TOTAL = WS-FIRST-NUMBER + WS-SECOND-NUMBER.

001800 DISPLAY ’THE TOTAL IS: ’, WS-TOTAL.

001900 STOP RUN.

http://www.engin.umd.umich.edu/CIS/course.des/cis400/cobol/seccob.html

COBOL

Scott Adams, 1997

ALGOL
begin

integer N;

Read Int(N);

begin

real array Data[1:N];

real sum, avg;

integer i;

sum:=0;

for i:=1 step 1 until N do

begin real val;

Read Real(val);

Data[i]:=if val<0 then -val else val

end;

for i:=1 step 1 until N do

sum:=sum + Data[i];

avg:=sum/N;

Print Real(avg)

end

end
http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/average.html

LISP

(defun convert ()

(format t "Enter Fahrenheit ")

(LET (fahr)

(SETQ fahr (read fahr))

(APPEND ’(celsisus is) (*(- fahr 32)(/ 5 9)))

)

)

http://www.engin.umd.umich.edu/CIS/course.des/cis400/lisp/convert.html

LISP

http://deskthority.net/viewtopic.php?f=2&t=98

APL

http://www.rexswain.com/aplinfo.html

http://en.wikipedia.org/wiki/APL (programming language)

SNOBOL

&TRIM = 1

WORDPAT = BREAK(&LCASE &UCASE) SPAN(&LCASE &UCASE "’-") . WORD

COUNT = ARRAY(’3:9’,0)

READ LINE = INPUT :F(DONE)

NEXTW LINE WORDPAT = :F(READ)

COUNT<SIZE(WORD)> = COUNT<SIZE(WORD)>+ 1 :(NEXTW)

DONE OUTPUT = "WORD LENGTH NUMBER OF OCCURRENCES"

I = 2

PRINT I = I + 1

OUTPUT = LPAD(I,5) LPAD(COUNT<I>,20) :S(PRINT)

END

http://www.engin.umd.umich.edu/CIS/course.des/cis400/snobol/word.html

BASIC

10 INPUT "ENTER TWO NUMBERS SEPARATED BY A COMMA:

20 LET S = N1 + N2

30 LET D = N1 - N2

40 LET P = N1 * N2

50 LET Q = N1 / N2

60 PRINT "THE SUM IS ", S

70 PRINT "THE DIFFERENCE IS ", D

80 PRINT "THE PRODUCT IS ", P

90 PRINT "THE QUOTIENT IS ", Q

100 END

http://www.engin.umd.umich.edu/CIS/course.des/cis400/basic/mathoper.html

LOGO

FORWARD 100 ; draws a square with sides 100 units long

LEFT 90

FORWARD 100

LEFT 90

FORWARD 100

LEFT 90

FORWARD 100

LEFT 90

http://en.wikipedia.org/wiki/Logo (programming language)

Forth

0 CONSTANT ${

: ->$$ CELLS + CELL+ @ COUNT ; (addr ix -- ’strings)

: }$ CREATE (addr*u u --) DUP , 0 ?DO , LOOP

DOES> (ix -- c-addr u) DUP @ 1- ROT - ->$$;

: }s$ CREATE (addr*u u --) DUP 3 / , 0 ?DO , LOOP

DOES> (ix -- c-addr u) DUP @ 1- ROT - 3 * 3 CHOOSE + ->$$;

: }r$ CREATE (addr*u u --) DUP , 0 ?DO , LOOP

DOES> (-- c-addr u) DUP @ CHOOSE ->$$;

S" phrases.forth" INCLUDED

’ filler >BODY @ CONSTANT #phrases

’ intros >BODY @ CONSTANT #intros

: Split-At-Char (addr1 n1 char -- addr2+n2 n1-n2 addr2 n2)

LOCALS| ch |

ch SKIP

2DUP ch SCAN TUCK 2>R - 2R> 2SWAP ;

: CR’ CR 0 linecount ! ;

: SPACE’ linecount @ IF SPACE 1 linecount +! THEN ;

: TYPE’ DUP linecount +! TYPE ; (char --)

: -FITS? linecount @ + RMARGIN > ; (#chars -- TRUE=fits-on-this-line)

: ANOTHER? DUP ; (#chars -- TRUE=string-not-empty)

http://www.forth.com/starting-forth/sf12/wordgame.forth

Lucid

prime

where

prime = 2 fby (n whenever isprime(n));

n = 3 fby n+2;

isprime(n) = not(divs) asa divs or prime*prime > N

where

N is current n;

divs = N mod prime eq 0;

end;

end

http://en.wikipedia.org/wiki/Lucid (programming language)

Prolog

gcd(A,B,GCD) :- A = B, GCD = A.

gcd(A,B,GCD) :- A < B, NB is B - A, gcd(A,NB,GCD).

gcd(A,B,GCD) :- A > B, NA is A - B, gcd(NA,B,GCD).

fib(0,1).

fib(1,1).

fib(N,F) :- N > 1, N1 is N - 1, N2 is N - 2,

fib(N1,F1), fib(N2,F2), F is F1 + F2.

ack(0,N,A) :- A is N + 1.

ack(M1,0,A) :- M > 0, M is M - 1, ack(M,1,A).

ack(M1,N1,A) :- M1 > 0, N1 > 0, M is M - 1, N is N - 1,

ack(M1,N,A1), ack(M,A1,A).

http://cs.wwc.edu/KU/PR/Prolog.html

PL/I

BUBBLE: PROCEDURE(ARRAY,N); /* BUBBLE SORT*/

DECLARE (I,J) FIXED BIN(15);

DECLARE S BIT(1); /* SWITCH */

DECLARE Y FIXED BIN(15); /* TEMPO */

DO I = N-1 BY -1 TO 1;

S = ’1’B;

DO J = 1 TO I;

IF X(J)>X(J+1) THEN DO;

S = ’0’B;

Y = X(J);

X(J) = X(J+1);

X(J+1) = Y;

END;

END;

IF S THEN RETURN;

END;

RETURN;

END SRT;

http://www.engin.umd.umich.edu/CIS/course.des/cis400/pl1/pl1bubble.html

Pascal
program ArithFunc;

const

Sentinel =0.0;

var

X:Real;

begin

writeln(’After each line enter a real number or 0.0 to stop’);

writeln;

writeln(’X’, ’Trunc(x)’ :16, ’Round(X)’ :10, ’Abs(X)’ :10,

’Sqr(X)’ :10, ’Sqrt(Abs(X))’ :15);

readln (X);

while X <> Sentinel do

begin

writeln (Trunc(X) :17, Round(X) :10, Abs(X) :10:2,

Sqr(x) :10:2, Sqrt(Abs(X)) :10:2);

readln(X);

end

end.

http://www.engin.umd.umich.edu/CIS/course.des/cis400/pascal/arithmetic.html

Ada

package body ArrayCalc is

function sum return integer is

temp: integer;

-- Body of function sum

begin

temp := 0;

for i in 1..v.sz loop

temp := temp + v.val(i);

end loop;

v.sz:=0;

return temp;

end sum;

procedure setval(arg:in integer) is

begin

v.sz:= v.sz+1;

v.val(v.sz):=arg;

end setval; end;

http://www.engin.umd.umich.edu/CIS/course.des/cis400/ada/array summation.html

BCPL

// Routine to compute a checksum of a

// named file, simplified from a compiler example.

GET "libhdr"

LET start() = VALOF

$(LET args = VEC 50

LET instream = 0

LET outstream = 0

LET sum = 314159

IF rdargs("FROM/A,TO/K", args, 50) = 0 DO

$(writes("Bad arguments for CHECKSUM*n")

RESULTIS 20

$)

instream := findinput(args!0)

IF instream = 0 DO $(writef("can’t open %s*n", args!0)

RESULTIS 20

$)

selectinput(instream)

http://cgibin.erols.com/ziring/cgi-bin/cep/cep.pl? alpha=b

B

printn(n,b) {

extrn putchar;

auto a;

if(a=n/b) /* assignment, not test for equality */

printn(a, b); /* recursive */

putchar(n%b + ’0’);

}

http://en.wikipedia.org/wiki/B (programming language)

Simula
BEGIN INTEGER X, N, SUM, MAX;

IF LASTITEM THEN OUTTEXT ("NULL LIST") ELSE

BEGIN SUM:=MAX:=ININT;

N:=1;

WHILE LASTITEM DC

BEGIN X:=ININT;

N:=N+1;

IF X > MAX THEN MAX:=X;

SUM:=SUM+X;

END;

OUTTEXT("LIST LENGTH = "); OUTINT (N, 6);

OUTTEXT(", HIGHEST = "); OUTINT (MAX, 6);

OUTTEXT(", AVERAGE = "); OUTFIX (SUM/N, 2,, 8);

END;

OUTIMAGE;

END

http://www.engin.umd.umich.edu/CIS/course.des/cis400/simula/f1.html

Smalltalk

|scfk|

f := Array new: 26.

s := Prompter prompt: ’Enter line’

default: ’’.

1 to: 26 do [:i | f at: i put: 0].

1 to: s size do: [:i |

c := (s at: i) asLowerCase.

c isLetter

ifTrue: [

k := c asciiValue - &a asciiValue + 1

]

].

^f

http://www.engin.umd.umich.edu/CIS/course.des/cis400/smalltalk/freq.html

Humor

Eternal Flame by Bob Kanefsky
(Parody on God lives on Terra by Julia Ecklar)

I was taught assembler
in my second year of school.
It’s kinda like construction work –
with a toothpick for a tool.
So when I made my senior year,
I threw my code away,
And learned the way to program
that I still prefer today.

Humor

Now, some folks on the Internet
put their faith in C++.
They swear that it’s so powerful,
it’s what God used for us.
And maybe it lets mortals dredge
their objects from the C.
But I think that explains
why only God can make a tree.

Humor

For God wrote in Lisp code
When he filled the leaves with green.
The fractal flowers and recursive roots:
The most lovely hack I’ve seen.
And when I ponder snowflakes,
never finding two the same,
I know God likes a language
with its own four-letter name.

Humor

Now, I’ve used a SUN under Unix,
so I’ve seen what C can hold.
I’ve surfed for Perls, found what Fortran’s for,
Got that Java stuff down cold.
Though the chance that I’d write COBOL code
is a SNOBOL’s chance in Hell.
And I basically hate hieroglyphs,
so I won’t use APL.

Humor

Now, God must know all these languages,
and a few I haven’t named.
But the Lord made sure, when each sparrow falls,
that its flesh will be reclaimed.
And the Lord could not count grains of sand
with a 32-bit word.
Who knows where we would go to
if Lisp weren’t what he preferred?

Humor

And God wrote in Lisp code
Every creature great and small.
Don’t search the disk drive for man.c,
When the listing’s on the wall.
And when I watch the lightning burn
Unbelievers to a crisp,
I know God had six days to work,
So he wrote it all in Lisp.

Yes, God had a deadline.
So he wrote it all in Lisp.

Are programming languages languages?

In some universities, the systems used [to program
computers] (BASIC, PASCAL, LISP, etc), metaphorically
referred to as “programming languages,” can now be
substituted for the study of French, German, or Russian,
the faster to make the students computer literate. These
are not, of course, languages at all; they are coding
systems.

Theodore Roszak, “Computers and Reason”

Are programming languages languages?
The typical person’s understanding of the language he
uses, however, is not so profound as to prevent him from
labeling someting as a language that might resemble one
only superficially. Thus, it is not surprising that the
systems of notation which we use to communicate with
our compuers came to be known as “programming
languages.” In fact, the very first programmer, Lady
Lovelace, seems to have had the idea of a programming
language as early as 1846. . .
In view of the venerable past of the programming
language concept, it would be pedantic to attempt to
demonstrate that programming languages are not “real”
languages. Languages are what they say they are, and we
ar perfectly entitiled to include systems of
communication between man and computer under the
same rubric as systems of communication between man
and man or beast and beast.

Gerald Weinberg, The Psychology of Computer Programming

