['F true : bool (1)
['F false : bool (2)

F'Fax:T(z) (3)

I'Fe; : bool I'keg: I'kesg:T
I'Fif e; then ey elsees: T

FU{(SL’l,T1>} |_€ Ty
F'Ffn(z)=>e:m —

I'kFe :m I'kFe:m — 1
I'Fe(er):m

(6)

We say that an expression e is well-typed in a type system if there exists an environment I' and a
type 7 such that the judgment I' - e : 7 can be proven by the type rules.

A type system is sound if well-typed programs cannot cause type errors.
What we want to do is prove BoolEm’s type system to be sound.

An expression is closed if it has no free variables.

A program is a closed expression.

A walue is a closed abstraction or a boolean constant. We'll use the value v to range over values.

(fn(z)=>€)(v) — elv/z] (7)

. ey if v =true
if vthen e, else e3 — .

es otherwise
ep — €]

e1(ez) — €/ (e2)

ey — €

v1(eg) — v1(eh)

(10)

ep — €}

(11)

if e; then ey else e3 — if €] then e; else e3

An expression e is stuck if it is not a value and there does not exist an €’ such that e — ¢’.

An expression goes wrong if it evaluates to a stuck expression.

Substitution (Lemma 1) Value Forms (Lemma 3)
! !
Type Preservation (Theorem 2) Progress (Theorem 4)
N\ /

Soundness (Corollary 5)

Lemma 1 (Substitution.) IfTU{(z,7)}Fe: 7 and '+ v: 7, then
I'kefv/x]:T.

Theorem 2 (Type Preservation.) IfT'Fe: 7 ande — €', thenT ¢ : 7.

Lemma 3 (Value Forms.) IfT'F v : bool, then v is in the form true or false. IfT'F v : 1 — 7o,
then v is in the form fn(x) = e.

Theorem 4 (Progress.) Ife is a closed expression and I' = e : T, then either e is a value or there
exists an €' such that e — ¢€’.

Corollary 5 (Soundness) Well-typed programs cannot go wrong.

