
CS 335 — Software Development

Agile Methodologies

Jan 22, 2014

Principles/values

Rapid feedback Small initial investment

Assumption of simplicity Concrete experiments; test infection

Incremental, expected change Responsibility

Invest in the design of the system every day. Strive to
make the design of the system an excellent fit for the
needs of the system that day. When your understanding
of the best possible design leaps forward, work gradually
but persistently to bring the design back into alignment
with your understanding. (Beck, pg 51–52)

Practices/activities

Whole team Refactoring

Metaphor Pair programming

The planning game Collective ownership

Small releases Continuous integration

Simple design 40 hour work week

Testing On-site customer

Metaphor

Plan using units of customer-visible functionality.
“Handle five time the traffic with the same response
time.” “Provide a two-click way for users to dial
frequently used numbers.” As soon as a story is written,
try to estimate the development effort necessary to
implement it.
Software development has been steered wrong by the
word “requirement,” . . . The word carries a connotation
of absolutism and permanence, inhibitors to embracing
change. [Not all requirements will be found truly to be
obligatory.] (Beck, pg 44)

The planning game

Plan work a week at a time. Have a meeting at the
beginning of every week. During the meeting:

1. Review the progress to date
2. Have the customers pick a week’s worth of stories to

implement this week.
3. Break the stories into tasks. Team members sign up

for tasks and estimate them. (Beck pg 46)

Plan work a quarter at a time. Once a quarter reflect on
the team, the project, its progress, and its alignment with
larger goals.
Identify bottlenecks; plan the theme for the quarter; pick
a quarter’s worth of stories to address those themes.
(Beck, pg 47)

Testing

Write a failing automated test before changing any code.
Test-first programming addresses many problems at once:

I Scope creep—It’s easy to get carried away programming
and put in code “just in case.” By stated explicitly and
objectively what the program is supposed to do, you give
yourself a focus for your coding.

I Coupling and cohesion—If it’s hard to write a test, it’s a
sign that you have a design problem, not a testing
problem. Loosely coupled, highly cohesive code is easy to
test.

I Trust—It’s hard to test the author of code that doesn’t
work. By writing clean code that works and
demonstrating your intentions with automated tests, you
give your teammates a reason to trust you.

I Rhythm—It’s easy to get lost for hours when you are
coding. When programming test-first, it’s clearer what to
do next: either write another test or make the broken test
work. (Beck pg 50–51)

On-site customer

Make people whose lives and business are affected by your
system part of the team. Visionary customers can be part
of quarterly and weekly planning. . . . If this is the kind of
customer who encounters problems six months before the
rest of the market, making the system they want can put
you ahead of your competition. (Beck, pg 61)

Scrum: The product backlog

The Product Backlog is an ordered list of everything that
might be needed in the product and is the single source of
requirements for any changes to be made to the product.
A Product Backlog is never complete. The earliest
development of it only lays out the initially known and
best-understood requirements. The Product Backlog
evolves as the product and the environment in which it
will be used evolves. The Product Backlog is dynamic; it
constantly changes to identify what the product needs to
be appropriate, competitive, and useful. As long as a
product exists, its Product Backlog also exists.
The Product Backlog lists all features, functions,
requirements, enhancements, and fixes that constitute
the changes to be made to the product in future releases.
Product Backlog items have the attributes of a
description, order, estimate and value. (Scrum Guide, pg
12)

