
CS 335 — Software Development

Creational Patterns (Abstract Factory and Builder)

Feb 26, 2014



Token
<<interface>>

JavaLiteral

JavaIdentifier JavaOperator

JavaKeyword

JavaToken
SmallTalkToken

MLOperator
MLIdentifer

MLLiteral MLKeyword

MLToken

SmallTalkIdentifier

SmallTalkLiteral

SmallTalkOperator

SmallTalkKeyword

Literal

<<interface>>

Identifier

<<interface>>

Operator

<<interface>>

Keyword

<<interface>>



Tagged classes

Effective Java Item 20: Prefer class hierarchies to tagged
classes
Occasionally you may run across a class whose instances come in
two or more flavors and contain a tag field indicating the flavor of
the instance. Such tagged classes have numerous shortcomings:
boilerplate clutter, multiple implementations jumbled together,
increased memory footprint from irrelevant fields of other flavors,
constructors needing to set the tag field and initialize the right
data fields with no compile-time checking, etc. In short, a tagged
class is verbose, error-prone, and inefficient, a pallid imitation of a
class hierarchy.
Abridged from Bloch, Effective Java, pg 100–101.



Reflection

Effective Java Item 53: Prefer interfaces to reflection
The power of reflection comes at a price: You lose all the benefits
of compile-time type checking, the code required to perform
reflective access is clumsy and verbose, and performance suffers.
Abridged from Bloch, Effective Java, pg 230.



Template Method and Factory Method patterns

Template Method. Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses. Template Method
lets subclasses redefine (refine?) certain steps of an algorithm
without changing the algorithm’s structure. [DP, pg 235.]
Factory Method. Define an interface for creating an object, but
let subclasses decide which class to instantiate. Factory Method
lets a class defer instantiation to subclasses. [DP, pg 107.]



Lexer

JavaLexer MLLexer SmallTalkLexer



Lexer TokenFactory

JavaTokenFactory SmallTalkTokenFactory

MLTokenFactory



Abstract Factory

Provide an interface for creating families of related or dependent
objects without specifying their concrete classes. [DP, pg 87.]



Builder

Separate the construction of a complex object from its
representation so that the same construction process can create
different representations. [DP, pg 97.]


