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Adapter pattern

Convert the interface of a class into another interface that clients
expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces. [DP, pg 139]
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Compare DP pg 140.



(Class) Adapter pattern
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Decorator pattern

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality. [DP, pg 175; emphasis added]



Decorator pattern
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Compare DP pg 177.



Composite pattern

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly. [DP, pg 163]



Composite pattern



Bridge pattern

Decouple an abstraction from its implementation so that the two
can vary independently. [DP pg 151]



Bridge pattern
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Bridge pattern
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Bridge pattern


