
CS 335 — Software Development

“Several Patterns”: Adapter, Decorator, Composite, and Bridge

Feb 24, 2014



Adapter pattern

Convert the interface of a class into another interface that clients
expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces. [DP, pg 139]



(Object) Adapter pattern

Adaptee

operationB()

Client

Adaptor

operationA()

<<interface>>

Target

adaptee

operationA()

adaptee.operationB()

BETTER

Compare DP pg 140.



(Class) Adapter pattern

Client

Adaptor

operationA()

Adaptee

operationB()

operationB()

<<interface>>

Target

operationA()

Compare DP pg 140.



Decorator pattern

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality. [DP, pg 175; emphasis added]



Decorator pattern

ConcreteComponentA ConcreteComponentC

ConcreteComponentB

Component
<<interface>>

operation()

operation() operation()

operation()

component

addedState

operation()

addedOperation()

Decorator

...

component.operation()

Compare DP pg 177.



Composite pattern

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly. [DP, pg 163]



Composite pattern



Bridge pattern

Decouple an abstraction from its implementation so that the two
can vary independently. [DP pg 151]



Bridge pattern

WindowImplementation

Win7WindowImp

MacWindowImp

GnomeWindowImp

MainWindow DialogBox

Window

Compare DP pg 151.



Bridge pattern

imp.operationImp();

Abstraction

RefinedAbstraction ConcreteImpA ConcreteImpB

Implementor
<<interface>>

operation()

imp

operationImp()

operationImp() operationImp()

imp

Compare DP pg 152.



Bridge pattern


