
Favorite sentences from Jalote

I “The detailed requirements section describes the details of the
requirements that a developer needs to know for designing
and developing the system.” (pg 47)

I “Use cases specify the functionality of a system by specifying
the behavior of the system, captured as interactions of the
users with the system.” (pg 49)

I “The third common requirements error is incorrect fact.
Errors of this type occur when some fact recorded in the SRS
is not correct.” (pg 64)

Jalote on Good SRSs

I “The origin of most software systems is in the needs of some
clients.” (pg 38)

I “The problem is that the client usually does not understand
software . . . and the developer often does not understand the
client’s problem. . . ” (pg 38)

I “An error in the SRS will manifest itself as an error in the
final system implementing the SRS.” (pg 39)

The application domain represents all aspects of the user’s
problem. This includes that physical environment, the users and
other people, their work processes, and so on. It is critical for
analysts and developers to understand the application domain for a
system to accomplish its intended task effectively. . . .

The solution domain is the modeling space of all possible
systems. Modeling the solution domain represents the system
design and object design activities of the development process. . . .

Object-oriented analysis is concerned with modeling the
application domain. Object-oriented design is concerned with
modeling the solution domain. (Bruegge and Dutoit, pg 41)

The final output is the SRS document. As analysis precedes
specification, the first question that arises is: If formal modeling is
done during analysis, why are the outputs of the modeling not
treated as an SRS? The main reason is that modeling generally
focuses on the problem structure, not its external behavior.
Consequently, things like user interfaces are rarely modeled,
whereas they frequently form a major component of the SRS.
(Jalote, pg 41)

A new user who sits down to use a program does not come with a
completely blank slate. They have some expectations of how they
think the program is going to work. This is called the user model :
it is their mental understanding of what the program will do for
them. . . .
The program, too, has a model, only this one is encoded in bits
and will be faithfully executed by the CPU. This is called the
program model, and it is The Law. Nothing short of electrical
storms and cosmic rays can convince a CPU to disobey the
program model. (Spolsky, pg 8)

The analysis model is composed of three individual models: the
functional model, represented by use case and scenarios, the
analysis object model, represented by class and object diagrams,
and the dynamic model, represented by statechart and sequence
diagrams. . . .

The analysis model represents represents the system under
development from the user’s point of view. The analysis object
model is a part of the analysis model and focuses on the individual
concepts that are manipulated by the system. . . . The dynamic
model focus on the behavior of the system. (Bruegge and Dutoit,
pg 175–176)

I Functional requirements
I Nonfunctional requirements

I Usability
I Reliability (dependability)

I Robustness
I Safety

I Performance
I Response time
I Throughput
I Availability
I Accuracy

I Supportability
I Adaptability
I Maintainability
I Portability (Bruegge and Dutoit, pg 125–126)

Modify a Computer Record (Fox, pg 170)
Actors: Administrator
Stakeholders and needs:

I Administrator: To modify the database.

I Computer users: To have accurate data in the database.

I Accountants: To have accurate and complete data in the database.

Preconditions: The administrator is logged in and has a computer identifier.
Postconditions: The database is modified only if all correctness and completeness
checks on the modified record succeed and the Administrator confirms the changes.
Computer record edits are always saved unless the Administrator cancels the
transaction.
Trigger: Administrator initiates a computer record modification transaction.
Basic flow:

1. Administrator initiates the transaction and enters the computer identifier.

2. CAS displays all data for the indicated computer.

3. Administrator edits the data for the computer.

4. CAS verifies the changes and asks for confirmation that they should be accepted.

5. Administrator confirms the changes.

6. CAS modifies its database and informs the Administrator that the transaction is
complete.

(Continued from Fox, pg 170. . .)
Extensions:

I a Administrator cancels the operation: The use case ends.

I 1a The computer identifier is invalid:

I 1a1. CAS alerts the Administrator of the problem.
I 1a2. Administrator may Make a Query and correct the

problem, and activity resumes.
I 3a Administrator directs CAS to execute a held transaction (see 6a):

I 3a1. CAS modifies its database to complete the held
transaction and informs the Administrator that the transaction
is complete, and the use case ends.

I 4a CAS detects invalid or incomplete data.

I 4a1. CAS alerts the Administrator to the problem.
I 4a2. Administrator corrects the problem and activity resumes.

I 5a Administrator does not confirm the changes: The use case ends.

I 6a CAS is unable to modify its database:

I 6a1. CAS records the transaction for later completion, informs
the Administrator of the problem, and asks whether the
transaction should be held.

I 6a2. Administrator confirms that the transaction should be
held.

I 6a3. CAS verifies that it is holding the transaction and the use
case ends.

Simple Use Case Writing Guide (Bruegge and Dutoit, pg 137)

I Use cases should be named with verb phrases, what the user
is trying to accomplish.

I Actors should be named with noun phrases.

I The boundary of the system should be clear.

I Use case steps should be phrased in the active voice.

I The causal relationship between successive steps should be
clear.

I A use case should describe a complete user transaction.

I Exceptions should be described separately.

I A use cases should not describe the user interface of the
system.

I A use case should not exceed two or three pages

Consider a calendar application that allows users to categorize
events by whether they are recurring or one-time and also by
nature (school, work, personal, church, with various organization).
The calendar can be viewed day-at-a-time, week-at-a-time,
month-at-a-time, or as a continuous scroll. The view can show
events only of a selected nature, or they can show events of many
natures, color-coded. The user can also publish public views of the
calendar containing events appropriate for public knowledge.
Get into groups of 2 or 3 and write use cases for adding,
modifying, and deleting events and for viewing the calendar or
publishing views.

Kent Beck: I coined the term User Story, as far as I know, so I’ll
tell you what I had in mind.
My purpose is to maintain a balance of political power between
business and development. Use cases as I have seen them used are
complex and formal enough that business doesn’t want to touch
them. This leads to development asking all the questions and
writing down all the answers and taking responsibility for the
resulting corpus. Business is reduced to sitting on the other side of
the table and pointing.
I want a very different dynamic. I want business to feel ownership
of and take responsibility for the care and maintenance of ”the
requirements”. . . .
The idea of specifying the behavior of the system from an outside
perspective, and using those specifications throughout the life of
the system is the same. The execution is quite different.
(http://c2.com/cgi/wiki?UserStoryAndUseCaseComparison)

Jim Little: A user story is very simple and is written by the
customer. It’s incomplete, possibly inaccurate, and doesn’t handle
exceptional cases because not a lot of effort is expended making
sure it’s correct. . . .
A use case is more complex and is written by the developer in
cooperation with the customer. It attempts to be complete,
accurate, and handle all possible cases. A lot of effort it expended
to make sure it’s correct. . . .
My biased opinion is that user stories work better in any case that
the customer is readily available. In my opinion, the use-case
approach is wasteful since it tries to anticipate the questions that
need to be answered, and that’s naturally going to result a few
questions being missed and a few more being researched
unnecessarily. On the other hand, if the customer isn’t immediately
available, then the use case approach is probably better since it
avoids the overhead of customer latency most of the time.
(http://c2.com/cgi/wiki?UserStoryAndUseCaseComparison)

Rachel Davies: It appears that Use Cases and XP Stories have a
common purpose, to describe functional requirements.. . .
However, the purpose of the XP Story is not to document
requirements but to enable incremental software development to
proceed in an environment where requirements change is expected
. . .
In XP, Stories are by definition time-bounded (in estimated
development time) to enable their complete implementation in a
single iteration. In contrast, the scope of a Use Case depends on
applying an abstract definition, concerning system interaction with
external actors, to the development domain. (Davies 2001)

Frequently the client and the users do not understand or know all
their needs, because the potential of the new system is often not
fully appreciated. . . [analysts] also act as consultants who play an
active role of helping the clients and users identify their needs.
(Jalote, pg 58)

