
CSCI
245

Programming II: Object-Oriented Design

Spring 2015 MFW 12:45–1:50 pm SCI 131

http://cs.wheaton.edu/~tvandrun/cs245

Thomas VanDrunen
T630-752-5692 H630-639-2255 BThomas.VanDrunen@wheaton.edu

Office: SCI 163 Office hours:
MWThF (not Tu) 9:15–10:15am;
Tu 10:30-11:30; Th 1:30–3:30pm.
(Updated 2/25/15)

Contents

CATALOG DESCRIPTION. A gateway to the computer science major, introducing a range of themes
in the field of computer science. Object-oriented programming in Java or a similar language:
code reuse with composition and inheritance; generic types; design patterns. Software develop-
ment: development tools, attributes of good design. Algorithm analysis; searching and sorting
algorithms. Abstract data types: stacks, queues, trees, hashing; linked vs array-based im-
plementation. Systems programing in C; pointers and dynamic allocation; model of machine
memory, organization, and execution. Prerequisites: CSCI 235 or department approval.

TEXTBOOKS.
Savitch, Walter. Absolute Java, fifth edition, Addison Wesley, 2012. (This is the officially adopted
edition, but the fourth edition is still acceptable.)

McDowell, Charlie. On to C, Addison Wesley, 2001.

PURPOSE OF THE COURSE. For students taking this as their final computer science course, this
equips them with the tools they need for many programming tasks, and it abridges much of the
content of other courses in the computer science program.

For students going on in the computer science program, this course prepares them for the pro-
gramming tasks in later courses and introduces themes carried on throughout the curriculum.
This course is the “super-prerequisite” for the computer science major.

THEMES. The content of this course is organized under a variety of themes which will be pursued
concurrently throughout the semester.

Object-oriented programming in Java. (CSCI 235) This theme is a “post-requisite” of CSCI 235.
Basic object-oriented programming in Java is reviewed and advanced features are explored.

• A review of classes, interfaces, polymorphism, and other basic OOP features.

• A review of Java Collections.

• Class extension (subclassing, inheritance).

• Nested classes.

• Generics.

• Enum types.

Software development. (CSCI 335) We learn some tools and techniques for managing software
projects, both in C and Java.

• Software lifecycle.

• Documentation.

• IDEs.

1



• Revision control.

• Makefiles.

• (Time permitting) Unit testing.

Object-oriented design. (CSCI 335) We put the object-oriented features of a language like Java
into good use, learning design principles and programming idioms and patterns.

• Elements of good software design.

• UML.

• Refactoring.

• Design patterns.

– Basic creational patterns.
– The State pattern.
– The Strategy pattern.
– The Adaptor pattern.
– The Decorator pattern.

Analysis of algorithms. (CSCI 345) A crucial part of computer science is the formal modeling of
efficient use of resources, especially computational time. We study methods for analyzing
the complexity of iterative and recursive algorithms and compare the theoretical results with
experimental findings. Along the way we examine well-known sorting algorithms and touch
on proofs of program correctness. The core material is all introduced in the first three weeks,
but revisited and used throughout the semester.

• Loop invariants.

• Analyzing an iterative algorithm.

• Big-oh notation.

• Analyzing recursive algorithms.

• Empirical measurements of performance.

• Sorting.

Abstract data types. (CSCI 345) Our study of data structures has two goals in mind: under-
standing the principles of structuring data (logical ordering versus physical implementation,
linked structures versus contiguous memory), and becoming familiar with the most common
data structures.

• Linked lists and other linked structures.

• Abstract vs concrete types.

• Stacks.

• Queues.

• Binary trees.

• Hashing.

C programming. (CSCI 351) The C programming language is an important tool for understanding
how a computer works at a low level. Throughout the semester we will compare implementa-
tions of various ideas in C and Java.

• C basics.

• Functions and prototypes.

• Compiling, linking, preprocessing.

• Structs.

• Pointers and dynamic allocation.

• Strings.

2



• Bit operations.

• Function pointers.

Computer systems. (CSCI 351) We consider how a computer really works: how information is
represented, how instructions are executed, and how to accomplish computational tasks using
the most basic tools.

• Model of computer memory.

• Model of execution.

• Programming in a pseudo-assembly language.

• Model of function call and return.

Concurrency. As multi-core architecture has become mainstream, programming skills are not com-
plete without some competency for writing programs with multi-threading. Moreover, GUI pro-
gramming cannot be done the right way without an understanding of threads.

• Threads.

• Race conditions and dead locks.

• Java support for concurrency.

• GUI and event-driven programming.

The above list is in no way chronological. See the course website for a schedule.

Course procedures

HOW WE DO THIS COURSE. Class time is used to introduce new ideas and to work through
examples. I use a lot of handouts. Lab time is used to practice the ideas with help from peers.
Most of your work outside of class is spent on projects (one project every week-and-a-half to
two weeks). There also are occasional written assignments to reinforce concepts from class and
prepare you for the next class. Usually I will check them for completeness and go over the
solutions in class. The textbooks are mainly languages references, though occasionally you may
be asked to read something before class. Quizzes will be given at the beginning of lab time; their
main use is as practice test questions.

LAB PROTOCOL. Tuesday, 8:30–10:20 is our lab block. Our laboratory activity will follow a
specific protocol called pair programming. Two students will work together at one computer,
producing a single product, sharing two roles: The driver controls the mouse and keyboard and
does the actual programming; the navigator watches the driver, catches simple mistakes, thinks
of ways to test what is currently being programmed, and thinks ahead to the next task in the lab.
Students in a pair switch roles between each sub-task, or approximately every ten minutes. The
program is produced through discussion and collaboration; neither member of the pair should
dominate. While you work, your computer will be logged in through a class account; do not log
in as yourself during lab unless you are specifically instructed to do so.

Most labs will have a pre-lab reading on the course website. Make sure you read the pre-lab
reading ahead of time. Quickly glancing over it as lab begins defeats the purpose. The pre-lab
reading page will have a place for you to sign-in that you have read it. I will be able to tell at
what time you have done that.

SOME ADVICE. In past semesters I have had some students stumble in this course—in many
cases, I feel it could have been prevented. A lot of information needed in future CSCI courses is
packed into this semester. The course needs to be taken seriously. Here are a few bits of advice
on how best to manage this course:

• Start your projects early. The projects in this course are not sit-down/code-it-up/test-
test-test/turn-it-in kind of projects. They are think-think-think/design-design-design/plan-
tests/code/verify-tests kinds of projects.

3



• Read the pre-lab readings. They are there for a reason. They will make lab experiences
much less frustrating.

• Keep up with the material. The material in this class keeps on building on itself. If you
don’t understand something, don’t just shrug it off and move on. Even if it doesn’t seem
like last week’s material is being used this week, last week’s material is going to come back
later.

• When all else fails, ask for help. Your instructor, your TA, and many friendly lab rats are
there to help you succeed.

GRADING. There will be two tests, scheduled for Friday, Feb 27, and Wednesday, Apr 8, subject
to change. The final exam (which is cumulative) is Thurs, May 7, 1:30–3:30.

instrument weight
Projects 40
Labs 10
Quizzes and homework 5
Test 1 12.5
Test 2 12.5
Final exam 20

PROJECTS. I estimate 9 projects in this course. See the schedule on the course website for
approximate assignment and due dates. Some projects will overlap temporally.

Policies etc

ACADEMIC INTEGRITY. Since pair-programming is practiced in labs, students sometimes find
it unclear what constitutes fair collaboration in programming projects. You are encouraged to
discuss the problem in the abstract with your classmates; this may include working through
examples, drawing diagrams, and even jotting down some pseudo-code. If you are really stuck
on a compiler error or bug (meaning that you have tried to figure it out for a long time are are
stumped), you may ask someone to look at your code to help you find it. Sharing test cases is
also a great way to help each other.

What is not allowed is sharing code. You may not program together, and you may not watch
each other programming for projects, either to give or receive help. Although it says above that
erroneous code may be looked at if the student is stuck, working code should be not be shown.
Think in analogy with problems sets in a math or science course: while it is ok to help each
other find the right place to look for the answer or discern why an answer is not working out, you
should not give or receive the answer. Moreover, downloading relevant code from the Internet is
manifestly dishonest.

While getting code from the Internet is cheating, you may find electronic and print resources
helpful in getting ideas for a project. In this case, think in analogy to avoiding plagiarism in a
research paper: if you use resources like this, it is crucial that you cite them in your comments.

Along these lines, if you do receive help beyond what is fair from outside resources (including
the Internet) or a classmate, you should give credit. While I reserve the right to deduct points if
I judge you to have profited unfairly, I will be very lenient if you are candid and honest about it.

Collaboration is generally permitted on homework problems, since their purpose is primarily
instructive, not evaluative. If you do work together with another student, however, make sure
that you contribute equally; the homework assignment will do no good to a passive study partner.
The take-home test must be done completely independently; specific rules will be given when the
test is distributed.

A project or test on which a student violates these policies will be rejected. Repeated offenses
will be handled through the college’s official disciplinary procedures.

4



LATE ASSIGNMENTS. For projects, you are allowed a total of two late days during the course of
the semester—either one assignment two days late or two assignments one day late each. Late
projects beyond this will not be accepted.

No credit will be given for late homework problems.

ATTENDANCE. Students are expected to attend all class periods. It is courtesy to inform the
instructor when a class must be missed.

EXAMINATIONS. Students are expected to take all tests, quizzes, and exams as scheduled. In
the case where a test must be missed because of legitimate travel or other activities, a student
should notify the instructor no later than one week ahead of time and request an alternate time
to take the test. In the case of illness or other emergency preventing a student from taking a test
as scheduled, the student should notify the instructor as soon as possible, and the instructor
will make a reasonable accommodation for the student. The instructor is under no obligation
to give any credit to students for tests to which they fail to show up without prior arrangement
or notification in non-emergency situations. The final exam is Thursday, May 7, 1:30. I do not
allow students to take finals early (which is also the college’s policy), so make appropriate travel
arrangements.

GENDER-INCLUSIVE LANGUAGE. The college requires the following statement to be included on
all syllabi: For academic discourse, spoken and written, the faculty expects students to use gender
inclusive language for human beings.

SPECIAL NEEDS. Institutional statement: Wheaton College is committed to providing reason-
able accommodations for students with disabilities. Any student with a documented disability
needing academic adjustments is requested to contact the Academic and Disability Services
Office as early in the semester as possible. Please call 630.752.5941 or send an e-mail to
jennifer.nicodem@wheaton.edu for further information.

My own statement: Whenever possible, classroom activities and testing procedures will be ad-
justed to respond to requests for accommodation by students with disabilities who have doc-
umented their situation with the registrar and who have arranged to have the documentation
forwarded to the course instructor. Computer Science students who need special adjustments
made to computer hardware or software in order to facilitate their participation must also docu-
ment their needs with the registrar in advance before any accommodation will be attempted.

OFFICE HOURS. I try to keep a balance: Stop by anytime, but prefer my scheduled office hours.
Any time my door is closed, it means I’m doing something uninterruptible, such as making an
important phone call. Do not bother knocking; instead, come back in a few minutes or send me
an email. Be aware that this semester on MWF I teach three course, 12:45–4:20, so I will not be
available during what is often a popular office-hour time.

DRESS AND DEPORTMENT. Please dress in a way that shows you take class seriously—more like
a job than a slumber party. (If you need to wear athletic clothes because of activities before or
after class, that’s ok, but try to make yourself as professional-looking as possible.) If you must
eat during class (for schedule or health reasons), please let the instructor know ahead of time;
we will talk about how to minimize the distraction.

ELECTRONIC DEVICES. Please keep laptops and all electronic devices put away and silenced
during class. (That’s right, this is a computer science course, but you’re not allowed to use a
computer during class. Trying out programming concepts on your own during class time (for
example) is not productive because it takes you away from class discussion. You cannot multi-
task as well as you think you can.) Text in class and DIE.

5


