
Program testing can be used very effectively to show the
presence of bugs but never to show their absence.

E.W. Dijkstra, EWD 303

All by itself, a program is no more than half a conjecture.
The other half of the conjecture is the functional
specification the program is supposed to satisfy. The
programmer’s task is to present such complete
conjectures as proven theorems.

E.W. Dijkstra, EWD 1036



Bounded linear search returns

−1 if ∀ i ∈ [0, n),∼ P(sequence[i ])
k otherwise, where P(sequence[k])

and ∀ i ∈ [0, k),∼ P(sequence[i ])

Invariant (Loop of bounded linear search.)

(a) ∀ j ∈ [0, i − 1),∼ P(sequence[j ])

(b) found iff P(sequence[i − 1])

(c) i is the number of iterations completed.



Initialization.

(a) Since i is initially 0, the range [0, i) = [0, 0) which is empty.
Hence the proposition is vacuously true.

(b) Assuming ∼ P(undef ) makes this hold.

(c) There have been 0 iterations, and i = 0.

Maintenance. Distinguish ipre and ipost, namely
ipost = ipre + 1. Similarly distinguish foundpre and foundpost

(a) It must be that ∼ foundpre or else the guard would have
failed. Thus ∼ P(sequence[ipre − 1]), by inductive
hypothesis, part b. Together with the fact that that
∀ j ∈ [0, ipre − 1),∼ P(sequence[j ]), we now have
∀ j ∈ [0, ipre),∼ P(sequence[j ]), that is
∀ j ∈ [0, ipost − 1),∼ P(sequence[j ]).

(b) Immediate from the assignment to found.

(c) Immediate from the update to i . �



Correctness claim (bounded linear search.)

After at most n iterations, bounded linear search will return as
specified.

Proof. By Invariant 1.c, after at most n iterations, i = n and the
guard will fail. Moreover, when the guard fails, either found or
i = n.
Case 1. Suppose found. Then we return i − 1. Invariant 1.a tells
us that nothing in [0, i − 1) satisfies P. Invariant 1.b tells us that
i − 1 does. Together these fulfill the second part of the
specification: i − 1 is the first item satisfying P, and we return it.
Case 2. Suppose ∼ found. By elimination i = n. Invariant 1.a
tells us that nothing in [0, n − 1) satisfies P. Invariant 1.b tells us
that i − 1, that is, n − 1, also does not satisfy P. We return −1,
fulfilling the first part of the specification. �



Binary search returns

−1 if ∀ i ∈ [0, n), sequence[i ] 6= item

k otherwise, where sequence[k] = item

Invariant (Loop of binary search.)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then
∃ j ∈ [low, high) such that item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i

.



Invariant (Class Exercise2.)

(a) head == null iff tail == null iff size == 0.

(b) If tail != null then tail.next == null.

(c) If head != null then tail is reached by following size - 1
next links from head.



def binary_searfch(sequence, TO, item):

low = 0
high = len(sequence)
while high − low > 1 :

mid = (low + high) / 2
compar = TO(item, sequence[mid])
if compare < 0:

high = mid
elif compar > 0:

low = mid + 1

else:

low = mid
high = mid + 1

if low < high and TO(item, sequence[low]) == 0:

return low
else:

return −1

c1

c2
c3

c4
c5

c6

c7

c8

c9

c10

Tbs(n) = c1 + c2(lg n + 1) + (c3 + max(c4, c5 + c6, c5 + c7)) lg n
+c8 + max(c9, c10)

= d0 + d1 lg n



Every time you run a program, you are performing a
scientific experiment that relates the program to the
natural world and answers one of our core questions:
How long will my program take?
The running time [of many programs] is relatively
insensitive to the input itself; it depends primarily on the
problem size.

Sedgewick, pg 173



g(n) ∼ f (n) means the functions are asymptotically equal, that is,

that limn→∞
g(n)
f (n) = 1. Thus n3

6 −
n2

2 + n
3 ∼

n3

6 .

g(n) = O(f (n)), which really should be written g(n) ∈ O(f (n)),
means that a scaled version of f (n) asymptotically bounds g
above. It means there exists a c such that when n is large enough,
g(n) ≤ cf (n). Thus n3

6 −
n2

2 + n
3 = O(n

3

6 ) but also
n3

6 −
n2

2 + n
3 = O(n3) and n3

6 −
n2

2 + n
3 = O(n4).

With big-oh, you can throw away the lower ordered terms and
throw away the constant factor of the highest order term and
overshoot.

With tilde, you only can throw away the lower ordered terms.


