

Lemma (Safe edges in Kruskal's algorithm.)
If $G=(V, E)$ is a graph, A is a subset of a minimum spanning tree for $G,(u, v)$ is the lightest edge connecting any distinct connected components of A, then (u, v) is a safe edge for A, that is, $A \cup\{(u, v)\}$ is a subset of a minimum spanning tree.

Proof. Suppose everything in the hypothesis, in particular that A is a subset of some minimum spanning tree T and that u and v are in distinct connected components of A, call them A_{u} and A_{v}. Let w_{T} be the total weight of T, that is, the sum of the weights of all the edges of T. We want to prove that adding (u, v) to A makes something that is still a subset of some minimum spanning tree.

If $(u, v) \in T$, then we're done. Suppose, then, that T does not contain (u, v). Since T is a spanning tree, it means that u and v are connected in T. Pick the lightest edge on the path from u to v that is not in A, call it (x, y). Essentially (x, y) is an edge that was picked instead of (u, v) that contributed to connecting A_{u} and A_{v}.

Snip out (x, y). This would disconnect T, that is, the graph $T-\{(x, y)\}$ is not a tree, but rather contains two connected components, one with u in it and the other with v in it. Now splice in (u, v). That will reconnect u and v and make it into a tree again. Formally we've made a new spanning tree $(T-\{(x, y)\}) \cup\{(u, v)\}$.

The hypothesis says that (u, v) was the lightest edge connecting distinct components of A. That means $w(u, v) \leq w(x, y)$. That in turn means that the total weight of the new spanning tree is also just as good, if not better, than the old one:
$\left.w_{(} T-\{(x, y)\}\right) \cup\{(u, v)\} \leq w_{T}$. Since it ties or beats a (supposed) minimum spanning tree, $(T-\{(x, y)\}) \cup\{(u, v)\}$ must be a minimum spanning tree. Therefore (u, v) is safe.
initialize A to \emptyset
make a disjoint-set data structure with each vertex its own set sort the edges by weight for each edge (u, v)
if $\mathrm{findSet}(u) \neq \mathrm{findSet}(v)$
add (u, v) to A
union (u, v)
initialize A to \emptyset
initialize all vertices with distance ∞
initialize $p q$ with all vertices
while $p q$ is not empty

```
\(u=p q\).extractMax()
for each \(v \in u\).adj
    if \(v \in p q\) and \((u, v) \cdot w<v\).distBound
        add \((u, v)\) to \(A\)
        \(v\). distBound \(=(u, v) . w\)
        \(p q\).increaseKey(v)
```

