What is the probability that a search miss will require i probes?

How likely is it that position $h(k)$ is filled? $\frac{n}{m}$.
How likely is it that position $h(k)+1$ is filled? Seems like $\frac{n-1}{m-1}$.

The probability that a search miss will require at least i probes is

$$
\begin{aligned}
& \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2} \\
\leq & \left(\frac{n}{m}\right)^{i-1} \\
= & \alpha^{i-1}
\end{aligned}
$$

Where does the inequality come from? Observe that

$$
\begin{aligned}
n & <m \\
-m & <-n \\
m n-m & <m n-n \\
m(n-1) & <n(m-1) \\
\frac{n-1}{m-1} & <\frac{n}{m}
\end{aligned}
$$

So, the expected number of probes is a weighted average of all possible number of probes:

$$
\begin{aligned}
& \sum_{i=1}^{\infty} i \cdot P\binom{\text { it takes }}{i \text { probes }}=\sum_{i=1}^{\infty} i \cdot\left(\begin{array}{c}
\text { it takes } \\
P(\text { at least })
\end{array} \underset{\text { it takes at }}{P(\text { least } i-1)} \underset{\text { probes }}{P}\right. \\
& =\sum_{i=1}^{\infty} \underset{i \text { probes }}{\text { it takes }} \underset{i=1}{(\text { at least })} \leq \sum_{i}^{\infty} \alpha^{i-1} \\
& =\sum_{i=0}^{\infty} \alpha^{i}=1+\alpha+\alpha^{2}+\alpha^{3} \\
& =\frac{1}{1-\alpha}
\end{aligned}
$$

