
CS 365 — Programming Language Concepts

Introduction

Jan 11, 2016



Are programming languages languages?

In some universities, the systems used [to program
computers] (BASIC, PASCAL, LISP, etc), metaphorically
referred to as “programming languages,” can now be
substituted for the study of French, German, or Russian,
the faster to make the students computer literate. These
are not, of course, languages at all; they are coding
systems.

Theodore Roszak, “Computers and Reason”



Are programming languages languages?

The typical person’s understanding of the language he uses,
however, is not so profound as to prevent him from labeling
someting as a language that might resemble one only
superficially. Thus, it is not surprising that the systems of
notation which we use to communicate with our compuers
came to be known as “programming languages.” In fact, the
very first programmer, Lady Lovelace, seems to have had the
idea of a programming language as early as 1846. . .
In view of the venerable past of the programming language
concept, it would be pedantic to attempt to demonstrate that
programming languages are not “real” languages. Languages
are what they say they are, and we are perfectly entitiled to
include systems of communication between man and computer
under the same rubric as systems of communication between
man and man or beast and beast.

Gerald Weinberg, The Psychology of Computer Programming



Abstraction

Programmers are more effective if shielded from, not
exposed to, the innards of modules not their own.

Fred Brooks, MMM

The effective exploitation of his powers of abstraction
must be regarded as one of the most vital activities of a
competent programmer.

Edsgar Dijkstra, Turing talk (EWD 340)



Paradigms

Most books rigorously adhere to the sacred division of
languages into “functional”, “imperative”,
“object-oriented”, and “logic” camps. I conjecture that
this desire for taxonomy is an artifact of our science-envy
from the early days of our discipline: a misguided attempt
to follow the practice of science rather than its spirit.
We are, however, a science of the artificial. What else to
make of a language like Python, Ruby, or Perl? Their
designers have no patience for the niceties of these
Linnaean hierarchies; they borrow features as they wish,
creating melanges that utterly defy characterization. How
do we teach PL in this post-Linnaean era?

Shriram Krishnamurthi, “Teaching Programming Languages in a

Post-Linnaean Age”


