$$\Gamma \vdash \texttt{true:bool} \tag{1}$$

$$\Gamma \vdash false: bool$$
 (2)

$$\Gamma \vdash x : \Gamma(x) \tag{3}$$

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau}$$

$$\frac{\Gamma \cup \{(x_1, \tau_1)\} \vdash e : \tau_2}{\Gamma \vdash \text{fn}(x) \Rightarrow e : \tau_1 \to \tau_2}$$
(4)

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_1 \to \tau_2}{\Gamma \vdash e_1(e_2) : \tau_2} \tag{6}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\{\} \vdash \texttt{true} : \texttt{bool} \qquad \begin{array}{c} \{(x, \tau_3)\} \vdash x : \tau_4 & \{(y, \tau_5)\} \vdash \texttt{false} : \texttt{bool} \\ \\ \hline \\ \{\} \vdash \texttt{fn}(x) = > x : \tau_3 \to t_4 & \{\} \vdash \texttt{fn}(y) = >\texttt{false} : \tau_5 \to \tau_6 \end{array}$$

 $\{\} \vdash \text{if true then fn}(x) = > x \text{ else fn}(y) = > \text{false} : \tau_1 \rightarrow \tau_2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$(fn(x)=>e)(v) \longrightarrow e[v/x]$$
 (7)

if vthen
$$e_2$$
 else $e_3 \longrightarrow \begin{cases} e_2 & \text{if } v = \text{true} \\ e_3 & \text{otherwise} \end{cases}$ (8)

$$\frac{e_1 \longrightarrow e'_1}{e_1(e_2) \longrightarrow e'_1(e_2)} \tag{9}$$

$$\frac{e_2 \longrightarrow e'_2}{v_1(e_2) \longrightarrow v_1(e'_2)} \tag{10}$$

$$\frac{e_1 \longrightarrow e'_1}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \longrightarrow \text{if } e'_1 \text{ then } e_2 \text{ else } e_3} \qquad (11)$$

Lemma (Substitution.) If $\Gamma \cup \{(x, \tau')\} \vdash e : \tau$ and $\Gamma \vdash v : \tau'$, then $\Gamma \vdash e[v/x] : \tau$.

Theorem (Type Preservation.) If $\Gamma \vdash e : \tau$ and $e \longrightarrow e'$, then $\Gamma \vdash e' : \tau$.

Lemma (Value Forms.)

If $\Gamma \vdash v$: bool, then v is in the form true or false. If $\Gamma \vdash v : \tau_1 \rightarrow \tau_2$, then v is in the form $fn(x) \Rightarrow e$.

Theorem (Progress.)

If e is a closed expression and $\Gamma \vdash e : \tau$, then either e is a value or there exists an e' such that $e \longrightarrow e'$.

Corollary (Soundness)

Well-typed programs cannot go wrong.

《曰》 《聞》 《理》 《理》

æ

Lemma 1 (Substitution.) *If* $\Gamma \cup \{(x, \tau')\} \vdash e : \tau$ *and* $\Gamma \vdash v : \tau'$ *, then* $\Gamma \vdash e[v/x] : \tau$ *.*

Proof. By induction on the derivation of $\Gamma \cup \{(x, \tau')\} \vdash e : \tau$. What was the last rule applied in order to derive $\Gamma \cup \{(x, \tau')\} \vdash e : \tau$? Each possible rule is a different case, so we have a division into cases: **Rule 1 or 2:** This would mean that e = c, where c is some boolean constant, and so $\tau = bool$. That is, $\Gamma \cup \{x : \tau'\} \vdash c : bool$ In other words, x doesn't even appear in e.

Then c[v/x] = c and $\Gamma \vdash c$: bool.

Rule 3: Then e = y for some variable y. (We choose y instead of x so the names don't clash.) Then we have two sub cases: either y and x really are the same variable, or $y \neq x$.

Case a: Suppose x = y. Then $\Gamma \cup \{x : \tau'\} \vdash x : \tau' \text{ (that is, } \tau = \tau')\text{, by Rule 3.}$ Moreover, x[v/x] = v, and $\Gamma \vdash v : \tau'$. **Case b:** Suppose $x \neq y$. Then the substitution doesn't change the expression at all. y[v/x] = y and $\Gamma \vdash y : \tau$.

Rule 4: Suppose $e = \text{if } e_1 \text{ then } e_2 \text{ else } e_3$. By Rule 4, it must be that $\Gamma \cup \{x : \tau'\} \vdash e_1 : \text{bool}, e_2 : \tau, e_3 : \tau$. Note that $e[v/x] = \text{if } e_1[v/x] \text{ then } e_2 \text{ else } e_3[v/x]$. By induction, $\Gamma \vdash e_1[v/x] : \text{bool}, e_2[v/x] : \tau, e_3[v/x] : \tau$. By Rule 4 again, $\Gamma \vdash \text{if } e_1[v/x] \text{ then } e_2 \text{ else } e_3[v/x] : \tau$. **Rule 5:** Suppose $e = fn(y) => e_1$. Then $\tau = \tau_1 \rightarrow t_2$ for some τ_1 and τ_2 . Note that $(fn(y) => e_1)[v/x] = fn(y) => e_1[v/x]$. The last step of the derivation must have been

$$\frac{\Gamma \cup \{(x,\tau'),(y,\tau_1)\} \vdash e_1 : \tau_2}{\Gamma \cup \{(x,\tau')\} \vdash fn(y) = > e_1}$$

By induction, $\Gamma \cup \{(y, \tau_1)\} \vdash e_1[v/x] : \tau_2$. By Rule 5, $\Gamma \vdash (\operatorname{fn}(y) => e_1)[v/x] : \tau_1 \to \tau_2$. (Recall $\tau = \tau_1 \to \tau_2$.)

Rule 6: Suppose $e = e_1(e_2)$. Note that $(e_1(e_2))[v/x] = e_1[v/x](e_2[v/x])$. The last step of the derivation must have been

$$\frac{\Gamma \cup \{(x,\tau')\} \vdash e_1 : \tau_1 \rightarrow \tau \qquad \Gamma \cup \{(x,\tau')\} \vdash e_2 : \tau_1}{\Gamma \cup \{(x,\tau')\} \vdash e_2(e_2) : \tau}$$

for some τ_1 . By induction, $\Gamma \vdash e_1[v/x] : \tau_1 \rightarrow \tau$, $e_2[v/x] : \tau_1$, and so by Rule 6, $\Gamma \vdash e_1(e_2)[v/x] : \tau$. Therefore, by examination of the cases, replacing x with a value of the same type does not change the type of the expression. \Box

<ロト <四ト <注入 <注下 <注下 <

Theorem 2 (Type Preservation). *If* $\Gamma \vdash e : \tau$ *and* $e \longrightarrow e'$, *then* $\Gamma \vdash e' : \tau$.

Proof. By induction on the derivation of $\Gamma \vdash e : \tau$. **Rules 1 and 2:** Then e = c for some constant c, so $e \longrightarrow e'$ is impossible. **Rule 3:** Then e = x for some variable x, so $e \longrightarrow e'$ is

Rule 3: Then e = x for some variable x, so $e \longrightarrow e'$ is impossible.

Rule 5: Then e = fn(x) => e, so $e \longrightarrow e'$ is impossible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rule 4: Then $e = if e_1$ then e_2 else e_3 . This means the derivation is in the form

$$\frac{\Gamma \vdash e_1 : \texttt{bool} \qquad \Gamma \vdash e_2 : \tau \qquad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \texttt{if } e_1 \texttt{ then } e_2 \texttt{ else } e_3 : \tau}$$

e' was derived either using Rule 8 or Rule 11.

Rule 8: Then $e' = e_2$ or $e' = e_3$. Either way, we've already shown that the type is τ , so $\Gamma \vdash e' : \tau$. **Rule 11:** Then $e_1 \longrightarrow e'_1$ for some e'_1 , and also $e' = \text{if } e'_1$ then e_2 else e_3 . The important thing here is that $\Gamma \vdash e'_1$: bool. Why is this true? Induction. Now, applying rule 4 gives us $\Gamma \vdash \text{if } e'_1$ then e_2 else $e_3 : \tau$.

(日) (國) (필) (필) (필) 표

Rule 6: Then $e = e_1(e_2)$. That means the derivation is in the form

$$\frac{\Gamma \vdash e_1 : \tau' \to \tau \qquad \Gamma \vdash e_2 : \tau'}{\Gamma \vdash e_1(e_2) : \tau}$$

for some τ' . Now, e' was derived using one of Rule 7, 9, or 10.

Rule 9: Then $e_1 \rightarrow e'_1$ and $e' = e'_1(e_2)$. By induction, $\Gamma \vdash e'_1 : \tau' \rightarrow \tau$, and by rule 6 we have $\Gamma \vdash e'_1(e_2)$. **Rule 10** is similar, just with $e_2 \rightarrow e'_2$.

Rule 7: Then e_1 has the form $fn(x) => \hat{e}_1$, and e_2 is a value, say v_2 . Rule 7 ways that $e' = \hat{e}_1[v_2/x]$. Thus the derivation is

$$\frac{\frac{\Gamma \cup \{(x,\tau')\} \vdash \hat{e}_1 : \tau}{\Gamma \vdash e_1 : \tau' \to \tau} \quad \Gamma \vdash v_2 : \tau'}{\Gamma \vdash (\texttt{fn}(x) => \hat{e}_1)(v_2) : \tau}$$

Now we can apply Lemma 1. Since $\Gamma \cup \{(x, \tau')\} \vdash \hat{e}_1 : \tau \text{ and } \Gamma \vdash v_2 : \tau', \text{ then we}$ have $\Gamma \vdash \hat{e}_1[v_2/x] : \tau.$

Therefore no matter what step is taken, the type is preserved. \Box

Lemma 3 (Value Forms.) If $\Gamma \vdash v$: bool, then v is in the form true or false. If $\Gamma \vdash v : \tau_1 \rightarrow \tau_2$, then v is in the form $fn(x) \Rightarrow e$.

Proof. Immediate from rules 1, 2, and 5 and the definition of value. \Box

Theorem 4 (Progress.) If *e* is a closed expression and $\Gamma \vdash e : \tau$, then either *e* is a value or there exists an *e'* such that $e \longrightarrow e'$.

Proof. Once again, by induction on the derivation of $\Gamma \vdash e : \tau$. Once again, we divide this into cases based on the last rule applied in the derivation.

Rules 1 and 2: Then e = c, for some boolean constant *c*. Then *e* is a value.

Rule 3: Then e = x. This would mean x is a free variable, and e is not closed, contradicting our hypothesis. So, this case can't happen. **Rule 5:** Then $e = fn(x) = >e_1$. Since e is closed, e is a value.

Rule 4: Then $e = if e_1$ then e_2 else e_3 . We need to show that, based on the information we have (specifically, it's closed and well-typed), that it can take a step. Since e is closed, so are e_1 , e_2 , and e_3 . The last step in the derivation was

 $\frac{\Gamma \vdash e_1 : \texttt{bool} \qquad \Gamma \vdash e_2 : \tau \qquad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \texttt{if } e_1 \texttt{ then } e_2 \texttt{ else } e_3 : \tau}$

e₁ is either value or it is not a value.

Case 1: Suppose e_1 is a value. Then, since $\Gamma \vdash e_1$: bool, then by lemma 3, e_1 is either true or false. Hence by rule 8, either $e \longrightarrow e_1$ or $e \longrightarrow e_2$. **Case 2:** Suppose e_1 is not a value. Then $e_1 \longrightarrow e'_1$ for some e'_1 by structural induction. Then we apply rule 11: $e \longrightarrow \text{ if } e'_1 \text{ then } e_2 \text{ else } e_3$. **Rule 6:** $e = e_1(e_2)$. Since e is closed, e_1 and e_2 also are closed.

The last step in the derivation is

$$\frac{\Gamma \vdash e_1 : \tau' \to \tau \qquad \Gamma \vdash e_2 : \tau'}{\Gamma \vdash e_1(e_2) : \tau}$$

for some τ' . By induction, e_1 and e_2 are each either values or they reduce to another expression. We want to show that under the given circumstances, e can take a step. There are three cases:

<ロト <四ト <注入 <注下 <注下 <

- e_1 and e_2 are both values.
- e₁ is not a value (e₂, maybe, maybe not).
- e₁ is a value but e₂ is not.

Case 1: Suppose e_1 and e_2 are both values. By lemma 3, e_1 has the form $fn(x) => \hat{e}_1$. Then $e_1(e_2) = (fn(x) => \hat{e}_1)(e_2) \longrightarrow \hat{e}_1[e_2/x]$ by rule 7.

Case 2: Suppose e_1 is not a value. By induction, there exists e'_1 such that $e_1 \longrightarrow e'_1$, so by rule 9, $e_1(e_2) \longrightarrow e'_1(e_2)$. **Case 3:** Suppose e_1 is a value but e_2 is not. By induction, $e_2 \longrightarrow e'_2$ for some e'_2 . By rule 10, $e_1(e_2) \longrightarrow e_1(e'_2)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Corollary 5 (Soundness.) *Well-typed programs cannot go wrong.*

Proof. Combine Theorems 2 and 4. Specifically, suppose $\Gamma \vdash e : \tau$. Then, by Theorem 4, either e is a value or $e \longrightarrow e'$ for some e'. In the latter case, Theorem 2 says that $\Gamma \vdash e' : \tau$. Then apply Corollary 5 inductively. \Box