$$
\begin{equation*}
\Gamma \vdash \text { true : bool } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma \vdash \text { false : bool } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma \vdash x: \Gamma(x) \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\Gamma \vdash e_{1}: \text { bool } \Gamma \vdash e_{2}: \tau \quad \Gamma \vdash e_{3}: \tau \tag{4}\\
\Gamma \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: \tau \tag{5}\\
\frac{\Gamma \cup\left\{\left(x_{1}, \tau_{1}\right)\right\} \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{fn}(x) \Rightarrow e: \tau_{1} \rightarrow \tau_{2}}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e_{1}\left(e_{2}\right): \tau_{2}} \tag{6}
\end{equation*}
$$

$$
\left\{\left(x, \tau_{3}\right)\right\} \vdash x: \tau_{4}
$$

$$
\left\{\left(y, \tau_{5}\right)\right\} \vdash \text { false : bool }
$$

$\} \vdash$ true : bool

$$
\left\} \vdash \mathrm{fn}(x)=>x: \tau_{3} \rightarrow t_{4} \quad\{ \} \vdash \mathrm{fn}(y)=>\text { false }: \tau_{5} \rightarrow \tau_{6}\right.
$$

$\left\} \vdash\right.$ if true then $\mathrm{fn}(x)=>x$ else $\mathrm{fn}(y)=>$ false : $\tau_{1} \rightarrow \tau_{2}$

$$
\begin{equation*}
(f n(x)=>e)(v) \longrightarrow e[v / x] \tag{7}
\end{equation*}
$$

$$
\text { if } v \text { then } e_{2} \text { else } e_{3} \longrightarrow \begin{cases}e_{2} & \text { if } v=\text { true } \tag{8}\\ e_{3} & \text { otherwise }\end{cases}
$$

$$
\begin{equation*}
\frac{e_{1} \longrightarrow e_{1}^{\prime}}{e_{1}\left(e_{2}\right) \longrightarrow e_{1}^{\prime}\left(e_{2}\right)} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{e_{2} \longrightarrow e_{2}^{\prime}}{v_{1}\left(e_{2}\right) \longrightarrow v_{1}\left(e_{2}^{\prime}\right)} \tag{10}
\end{equation*}
$$

$\frac{e_{1} \longrightarrow e_{1}^{\prime}}{\text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \longrightarrow \text { if } e_{1}^{\prime} \text { then } e_{2} \text { else } e_{3}}$

Lemma (Substitution.)
If $\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e: \tau$ and $\Gamma \vdash v: \tau^{\prime}$, then
$\Gamma \vdash e[v / x]: \tau$.
Theorem (Type Preservation.)
If $\Gamma \vdash e: \tau$ and $e \longrightarrow e^{\prime}$, then $\Gamma \vdash e^{\prime}: \tau$.
Lemma (Value Forms.)
If $\Gamma \vdash v$: bool, then v is in the form true or false. If
$\Gamma \vdash v: \tau_{1} \rightarrow \tau_{2}$, then v is in the form $f n(x) \Rightarrow e$.
Theorem (Progress.)
If e is a closed expression and $\Gamma \vdash e: \tau$, then either e is a value or there exists an e^{\prime} such that $e \longrightarrow e^{\prime}$.

Corollary (Soundness)
Well-typed programs cannot go wrong.

Lemma 1 (Substitution.) If $\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e: \tau$ and $\Gamma \vdash v: \tau^{\prime}$, then $\Gamma \vdash e[v / x]: \tau$.

Proof. By induction on the derivation of $\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e: \tau$.
What was the last rule applied in order to derive $\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e: \tau$? Each possible rule is a different case, so we have a division into cases:
Rule 1 or 2: This would mean that $e=c$, where c is some boolean constant, and so $\tau=$ bool. That is, $\Gamma \cup\left\{x: \tau^{\prime}\right\} \vdash c$: bool In other words, x doesn't even appear in e.
Then $c[v / x]=c$ and $\Gamma \vdash c$: bool.

Rule 3: Then $e=y$ for some variable y. (We choose y instead of x so the names don't clash.) Then we have two sub cases: either y and x really are the same variable, or $y \neq x$.

Case a: Suppose $x=y$. Then $\Gamma \cup\left\{x: \tau^{\prime}\right\} \vdash x: \tau^{\prime}$ (that is, $\tau=\tau^{\prime}$), by Rule 3. Moreover, $x[v / x]=v$, and $\Gamma \vdash v: \tau^{\prime}$.
Case b: Suppose $x \neq y$. Then the substitution doesn't change the expression at all.
$y[v / x]=y$ and $\Gamma \vdash y: \tau$.
Rule 4: Suppose $e=$ if e_{1} then e_{2} else e_{3}. By Rule 4, it must be that $\Gamma \cup\left\{x: \tau^{\prime}\right\} \vdash e_{1}:$ bool, $e_{2}: \tau, e_{3}: \tau$. Note that $e[v / x]=$ if $e_{1}[v / x]$ then e_{2} else $e_{3}[v / x]$. By induction, $\Gamma \vdash e_{1}[v / x]$: bool, $e_{2}[v / x]: \tau, e_{3}[v / x]: \tau$.
By Rule 4 again,
$\Gamma \vdash$ if $e_{1}[v / x]$ then e_{2} else $e_{3}[v / x]: \tau$.

Rule 5: Suppose $e=\operatorname{fn}(y)=>e_{1}$. Then $\tau=\tau_{1} \rightarrow t_{2}$ for some τ_{1} and τ_{2}. Note that $\left(\mathrm{fn}(y)=>e_{1}\right)[v / x]=\mathrm{fn}(y)=>e_{1}[v / x]$.
The last step of the derivation must have been

$$
\frac{\Gamma \cup\left\{\left(x, \tau^{\prime}\right),\left(y, \tau_{1}\right)\right\} \vdash e_{1}: \tau_{2}}{\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash \mathrm{fn}(y)=>e_{1}}
$$

By induction, $\Gamma \cup\left\{\left(y, \tau_{1}\right)\right\} \vdash e_{1}[v / x]: \tau_{2}$. By Rule 5,
$\Gamma \vdash\left(\mathrm{fn}(y)=>\mathrm{e}_{1}\right)[v / x]: \tau_{1} \rightarrow \tau_{2}$. (Recall $\tau=\tau_{1} \rightarrow \tau_{2}$.)

Rule 6: Suppose $e=e_{1}\left(e_{2}\right)$. Note that $\left(e_{1}\left(e_{2}\right)\right)[v / x]=e_{1}[v / x]\left(e_{2}[v / x]\right)$.
The last step of the derivation must have been

$$
\frac{\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e_{1}: \tau_{1} \rightarrow \tau \quad \Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e_{2}: \tau_{1}}{\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash e_{2}\left(e_{2}\right): \tau}
$$

for some τ_{1}.
By induction, $\Gamma \vdash e_{1}[v / x]: \tau_{1} \rightarrow \tau, e_{2}[v / x]: \tau_{1}$, and so by Rule 6, $\Gamma \vdash e_{1}\left(e_{2}\right)[v / x]: \tau$.
Therefore, by examination of the cases, replacing x with a value of the same type does not change the type of the expression.

Theorem 2 (Type Preservation). If $\Gamma \vdash e: \tau$ and $e \longrightarrow e^{\prime}$, then $\Gamma \vdash e^{\prime}: \tau$.

Proof. By induction on the derivation of $\Gamma \vdash e: \tau$. Rules 1 and 2: Then $e=c$ for some constant c, so $e \longrightarrow e^{\prime}$ is impossible.
Rule 3: Then $e=x$ for some variable x, so $e \longrightarrow e^{\prime}$ is impossible.
Rule 5: Then $e=\operatorname{fn}(x)=>e$, so $e \longrightarrow e^{\prime}$ is impossible.

Rule 4: Then $e=$ if e_{1} then e_{2} else e_{3}. This means the derivation is in the form

$$
\frac{\Gamma \vdash e_{1}: \text { bool } \quad \Gamma \vdash e_{2}: \tau \quad \Gamma \vdash e_{3}: \tau}{\Gamma \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: \tau}
$$

e^{\prime} was derived either using Rule 8 or Rule 11.
Rule 8: $T h e n e^{\prime}=e_{2}$ or $e^{\prime}=e_{3}$. Either way,
we've already shown that the type is τ, so
$\Gamma \vdash e^{\prime}: \tau$.
Rule 11: Then $e_{1} \longrightarrow e_{1}^{\prime}$ for some e_{1}^{\prime}, and also
$e^{\prime}=$ if e_{1}^{\prime} then e_{2} else e_{3}.
The important thing here is that $\Gamma \vdash e_{1}^{\prime}$: bool.
Why is this true? Induction.
Now, applying rule 4 gives us
$\Gamma \vdash$ if e_{1}^{\prime} then e_{2} else $e_{3}: \tau$.

Rule 6: Then $e=e_{1}\left(e_{2}\right)$. That means the derivation is in the form

$$
\frac{\Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau \quad \Gamma \vdash e_{2}: \tau^{\prime}}{\Gamma \vdash e_{1}\left(e_{2}\right): \tau}
$$

for some τ^{\prime}. Now, e^{\prime} was derived using one of Rule 7, 9, or 10.

Rule 9: Then $e_{1} \longrightarrow e_{1}^{\prime}$ and $e^{\prime}=e_{1}^{\prime}\left(e_{2}\right)$. By induction, $\Gamma \vdash e_{1}^{\prime}: \tau^{\prime} \rightarrow \tau$, and by rule 6 we have $\Gamma \vdash e_{1}^{\prime}\left(e_{2}\right)$.
Rule 10 is similar, just with $e_{2} \longrightarrow e_{2}^{\prime}$.

Rule 7: Then e_{1} has the form $\mathrm{fn}(x)=>\hat{e}_{1}$, and e_{2} is a value, say v_{2}. Rule 7 ways that $e^{\prime}=\hat{e}_{1}\left[v_{2} / x\right]$.
Thus the derivation is

$$
\frac{\frac{\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash \hat{e}_{1}: \tau}{\Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau} \quad \Gamma \vdash v_{2}: \tau^{\prime}}{\Gamma \vdash\left(\operatorname{fn}(x)=>\hat{e}_{1}\right)\left(v_{2}\right): \tau}
$$

Now we can apply Lemma 1. Since
$\Gamma \cup\left\{\left(x, \tau^{\prime}\right)\right\} \vdash \hat{e}_{1}: \tau$ and $\Gamma \vdash v_{2}: \tau^{\prime}$, then we have $\Gamma \vdash \hat{e}_{1}\left[v_{2} / x\right]: \tau$.
Therefore no matter what step is taken, the type is preserved. \square

Lemma 3 (Value Forms.) If $\Gamma \vdash v$: bool, then v is in the form true or false. If $\Gamma \vdash v: \tau_{1} \rightarrow \tau_{2}$, then v is in the form $\mathrm{fn}(x) \Rightarrow e$.

Proof. Immediate from rules 1, 2, and 5 and the definition of value. \square

Theorem 4 (Progress.) If e is a closed expression and $\Gamma \vdash e: \tau$, then either e is a value or there exists an e^{\prime} such that $e \longrightarrow e^{\prime}$.

Proof. Once again, by induction on the derivation of $\Gamma \vdash e: \tau$. Once again, we divide this into cases based on the last rule applied in the derivation.
Rules 1 and 2: Then $e=c$, for some boolean constant
c. Then e is a value.

Rule 3: Then $e=x$. This would mean x is a free variable, and e is not closed, contradicting our hypothesis. So, this case can't happen.
Rule 5: Then $e=\operatorname{fn}(x)=>e_{1}$. Since e is closed, e is a value.

Rule 4: Then $e=$ if e_{1} then e_{2} else e_{3}. We need to show that, based on the information we have (specifically, it's closed and well-typed), that it can take a step.
Since e is closed, so are e_{1}, e_{2}, and e_{3}.
The last step in the derivation was

$$
\frac{\Gamma \vdash e_{1}: \text { bool } \quad \Gamma \vdash e_{2}: \tau \quad \Gamma \vdash e_{3}: \tau}{\Gamma \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: \tau}
$$

e_{1} is either value or it is not a value.
Case 1: Suppose e_{1} is a value. Then, since $\Gamma \vdash e_{1}$: bool, then by lemma 3, e_{1} is either true or false. Hence by rule 8, either
$e \longrightarrow e_{1}$ or $e \longrightarrow e_{2}$.
Case 2: Suppose e_{1} is not a value. Then $e_{1} \longrightarrow e_{1}^{\prime}$ for some e_{1}^{\prime} by structural induction.
Then we apply rule 11:
$e \longrightarrow$ if e_{1}^{\prime} then e_{2} else e_{3}.

Rule 6: $e=e_{1}\left(e_{2}\right)$. Since e is closed, e_{1} and e_{2} also are closed.
The last step in the derivation is

$$
\frac{\Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau \quad \Gamma \vdash e_{2}: \tau^{\prime}}{\Gamma \vdash e_{1}\left(e_{2}\right): \tau}
$$

for some τ^{\prime}. By induction, e_{1} and e_{2} are each either values or they reduce to another expression. We want to show that under the given circumstances, e can take a step. There are three cases:

- e_{1} and e_{2} are both values.
- e_{1} is not a value (e_{2}, maybe, maybe not).
- e_{1} is a value but e_{2} is not.

Case 1: Suppose e_{1} and e_{2} are both values. By lemma 3, e_{1} has the form $\operatorname{fn}(x)=>\hat{e}_{1}$. Then $e_{1}\left(e_{2}\right)=\left(f n(x)=>\hat{e}_{1}\right)\left(e_{2}\right) \longrightarrow \hat{e}_{1}\left[e_{2} / x\right]$ by rule 7.

Case 2: Suppose e_{1} is not a value. By induction, there exists e_{1}^{\prime} such that $e_{1} \longrightarrow e_{1}^{\prime}$, so by rule $9, e_{1}\left(e_{2}\right) \longrightarrow e_{1}^{\prime}\left(e_{2}\right)$.
Case 3: Suppose e_{1} is a value but e_{2} is not. By induction, $e_{2} \longrightarrow e_{2}^{\prime}$ for some e_{2}^{\prime}. By rule 10 , $e_{1}\left(e_{2}\right) \longrightarrow e_{1}\left(e_{2}^{\prime}\right)$.

Corollary 5 (Soundness.) Well-typed programs cannot go wrong.

Proof. Combine Theorems 2 and 4. Specifically, suppose $\Gamma \vdash e: \tau$.
Then, by Theorem 4, either e is a value or $e \longrightarrow e^{\prime}$ for some e^{\prime}. In the latter case, Theorem 2 says that $\Gamma \vdash e^{\prime}: \tau$. Then apply Corollary 5 inductively. \square

