
Γ ` true : bool (1)

Γ ` false : bool (2)

Γ ` x : Γ(x) (3)

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ
(4)

Γ ∪ {(x1, τ1)} ` e : τ2
Γ ` fn(x)⇒ e : τ1 → τ2

(5)

Γ ` e1 : τ1 Γ ` e2 : τ1 → τ2
Γ ` e1(e2) : τ2

(6)



{} ` true : bool

{(x , τ3)} ` x : τ4

{} ` fn(x)=>x : τ3 → t4

{(y , τ5)} ` false : bool

{} ` fn(y)=>false : τ5 → τ6

{} ` if true then fn(x)=>x else fn(y)=>false : τ1 → τ2



(fn(x)=>e)(v) −→ e[v/x ] (7)

if vthen e2 else e3 −→
{

e2 if v = true

e3 otherwise
(8)

e1 −→ e ′1
e1(e2) −→ e ′1(e2)

(9)

e2 −→ e ′2
v1(e2) −→ v1(e ′2)

(10)

e1 −→ e ′1
if e1 then e2 else e3 −→ if e ′1 then e2 else e3

(11)



Lemma (Substitution.)

If Γ ∪ {(x , τ ′)} ` e : τ and Γ ` v : τ ′, then
Γ ` e[v/x ] : τ .

Theorem (Type Preservation.)

If Γ ` e : τ and e −→ e ′, then Γ ` e ′ : τ .

Lemma (Value Forms.)

If Γ ` v : bool, then v is in the form true or false. If
Γ ` v : τ1 → τ2, then v is in the form fn(x)⇒ e.

Theorem (Progress.)

If e is a closed expression and Γ ` e : τ , then either e is a value or
there exists an e ′ such that e −→ e ′.

Corollary (Soundness)

Well-typed programs cannot go wrong.



Substitution (Lemma 1) Value Forms (Lemma 3)
↓ ↓

Type Preservation (Theorem 2) Progress (Theorem 4)
↘ ↙

Soundness (Corollary 5)



Lemma 1 (Substitution.) If Γ ∪ {(x , τ ′)} ` e : τ and
Γ ` v : τ ′, then Γ ` e[v/x ] : τ .

Proof. By induction on the derivation of
Γ ∪ {(x , τ ′)} ` e : τ .
What was the last rule applied in order to derive
Γ ∪ {(x , τ ′)} ` e : τ? Each possible rule is a different
case, so we have a division into cases:
Rule 1 or 2: This would mean that e = c, where c is
some boolean constant, and so τ = bool. That is,
Γ ∪ {x : τ ′} ` c : bool In other words, x doesn’t even
appear in e.
Then c[v/x ] = c and Γ ` c : bool.



Rule 3: Then e = y for some variable y . (We choose y
instead of x so the names don’t clash.) Then we have
two sub cases: either y and x really are the same
variable, or y 6= x.

Case a: Suppose x = y. Then
Γ ∪ {x : τ ′} ` x : τ ′ (that is, τ = τ ′), by Rule 3.
Moreover, x [v/x ] = v, and Γ ` v : τ ′.
Case b: Suppose x 6= y. Then the substitution
doesn’t change the expression at all.
y [v/x ] = y and Γ ` y : τ .

Rule 4: Suppose e = if e1 then e2 else e3. By Rule 4,
it must be that Γ ∪ {x : τ ′} ` e1 : bool, e2 : τ, e3 : τ .
Note that e[v/x ] = if e1[v/x ] then e2 else e3[v/x ].
By induction, Γ ` e1[v/x ] : bool, e2[v/x ] : τ, e3[v/x ] : τ .
By Rule 4 again,
Γ ` if e1[v/x ] then e2 else e3[v/x ] : τ .



Rule 5: Suppose e = fn(y)=>e1. Then τ = τ1 → t2 for
some τ1 and τ2. Note that
(fn(y)=>e1)[v/x ] = fn(y)=>e1[v/x ].
The last step of the derivation must have been

Γ ∪ {(x , τ ′), (y , τ1)} ` e1 : τ2
Γ ∪ {(x , τ ′)} ` fn(y)=>e1

By induction, Γ ∪ {(y , τ1)} ` e1[v/x ] : τ2. By Rule 5,
Γ ` (fn(y)=>e1)[v/x ] : τ1 → τ2. (Recall τ = τ1 → τ2.)



Rule 6: Suppose e = e1(e2). Note that
(e1(e2))[v/x ] = e1[v/x ](e2[v/x ]).
The last step of the derivation must have been

Γ ∪ {(x , τ ′)} ` e1 : τ1 → τ Γ ∪ {(x , τ ′)} ` e2 : τ1
Γ ∪ {(x , τ ′)} ` e2(e2) : τ

for some τ1.
By induction, Γ ` e1[v/x ] : τ1 → τ, e2[v/x ] : τ1, and so
by Rule 6, Γ ` e1(e2)[v/x ] : τ .
Therefore, by examination of the cases, replacing x with
a value of the same type does not change the type of the
expression. 2



Theorem 2 (Type Preservation). If Γ ` e : τ and
e −→ e ′, then Γ ` e ′ : τ .

Proof. By induction on the derivation of Γ ` e : τ .
Rules 1 and 2: Then e = c for some constant c, so
e −→ e ′ is impossible.
Rule 3: Then e = x for some variable x, so e −→ e ′ is
impossible.
Rule 5: Then e = fn(x)=>e, so e −→ e ′ is impossible.



Rule 4: Then e = if e1 then e2 else e3. This means
the derivation is in the form

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

e ′ was derived either using Rule 8 or Rule 11.

Rule 8: Then e ′ = e2 or e ′ = e3. Either way,
we’ve already shown that the type is τ , so
Γ ` e ′ : τ .
Rule 11: Then e1 −→ e ′1 for some e ′1, and also
e ′ = if e ′1 then e2 else e3.
The important thing here is that Γ ` e ′1 : bool.
Why is this true? Induction.
Now, applying rule 4 gives us
Γ ` if e ′1 then e2 else e3 : τ .



Rule 6: Then e = e1(e2). That means the derivation is
in the form

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1(e2) : τ

for some τ ′. Now, e ′ was derived using one of Rule 7, 9,
or 10.

Rule 9: Then e1 −→ e ′1 and e ′ = e ′1(e2). By
induction, Γ ` e ′1 : τ ′ → τ , and by rule 6 we
have Γ ` e ′1(e2).
Rule 10 is similar, just with e2 −→ e ′2.



Rule 7: Then e1 has the form fn(x)=>ê1, and
e2 is a value, say v2. Rule 7 ways that
e ′ = ê1[v2/x ].
Thus the derivation is

Γ ∪ {(x , τ ′)} ` ê1 : τ

Γ ` e1 : τ ′ → τ
Γ ` v2 : τ ′

Γ ` (fn(x)=>ê1)(v2) : τ

Now we can apply Lemma 1. Since
Γ ∪ {(x , τ ′)} ` ê1 : τ and Γ ` v2 : τ ′, then we
have Γ ` ê1[v2/x ] : τ .

Therefore no matter what step is taken, the type is
preserved. 2



Lemma 3 (Value Forms.) If Γ ` v : bool, then v is in
the form true or false. If Γ ` v : τ1 → τ2, then v is in
the form fn(x)⇒ e.

Proof. Immediate from rules 1, 2, and 5 and the
definition of value. 2



Theorem 4 (Progress.) If e is a closed expression and
Γ ` e : τ , then either e is a value or there exists an e ′

such that e −→ e ′.

Proof. Once again, by induction on the derivation of
Γ ` e : τ . Once again, we divide this into cases based on
the last rule applied in the derivation.
Rules 1 and 2: Then e = c, for some boolean constant
c. Then e is a value.
Rule 3: Then e = x. This would mean x is a free
variable, and e is not closed, contradicting our
hypothesis. So, this case can’t happen.
Rule 5: Then e = fn(x)=>e1. Since e is closed, e is a
value.



Rule 4: Then e = if e1 then e2 else e3. We need to
show that, based on the information we have (specifically,
it’s closed and well-typed), that it can take a step.
Since e is closed, so are e1, e2, and e3.
The last step in the derivation was

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

e1 is either value or it is not a value.

Case 1: Suppose e1 is a value. Then, since
Γ ` e1 : bool, then by lemma 3, e1 is either
true or false. Hence by rule 8, either
e −→ e1 or e −→ e2.
Case 2: Suppose e1 is not a value. Then
e1 −→ e ′1 for some e ′1 by structural induction.
Then we apply rule 11:
e −→ if e ′1 then e2 else e3.



Rule 6: e = e1(e2). Since e is closed, e1 and e2 also are
closed.
The last step in the derivation is

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1(e2) : τ

for some τ ′. By induction, e1 and e2 are each either
values or they reduce to another expression.
We want to show that under the given circumstances, e
can take a step. There are three cases:

I e1 and e2 are both values.
I e1 is not a value (e2, maybe, maybe not).
I e1 is a value but e2 is not.



Case 1: Suppose e1 and e2 are both values. By
lemma 3, e1 has the form fn(x)=>ê1. Then
e1(e2) = (fn(x)=>ê1)(e2) −→ ê1[e2/x ] by rule
7.
Case 2: Suppose e1 is not a value. By
induction, there exists e ′1 such that e1 −→ e ′1,
so by rule 9, e1(e2) −→ e ′1(e2).
Case 3: Suppose e1 is a value but e2 is not. By
induction, e2 −→ e ′2 for some e ′2. By rule 10,
e1(e2) −→ e1(e ′2).

2



Corollary 5 (Soundness.) Well-typed programs cannot
go wrong.

Proof. Combine Theorems 2 and 4. Specifically, suppose
Γ ` e : τ .
Then, by Theorem 4, either e is a value or e −→ e ′ for
some e ′. In the latter case, Theorem 2 says that
Γ ` e ′ : τ . Then apply Corollary 5 inductively. 2


