[+ true : bool

[+ false : bool

MNEx:T(x)

[+ e :bool e T [Fe3:T

N if e; then e else e3: 7T

rU{(Xl,Tl)}l— e: T
N-fn(x)=e:mm — 7

e :m le:m—m
M- ei(e2):m




{(x,m3)}Fx: 7 {(y,75)} I false : bool

{} F true : bool

{}Ffn(x)=>x 13— t4 {} F fn(y)=>false : 75 — 76

{} F if true then fn(x)=>x else fn(y)=>false: 1 — 7



(fn(x)=>e€)(v) — e[v/x]

e if v=true

if vthen e else e3 — .
e3 otherwise

e1 — €
ei(e2) — ej(e2)

e — e
Vl(ez) — vl(eé)

e1 — €]

if e; then e else e3 — if €] then e else €3



Lemma (Substitution.)
IFrTu{(x,7)}Fe:7and T+ v:7', then
MEelv/x]: .

Theorem (Type Preservation.)
IfTHFe:Tande — €, thenT +¢€ : 1.

Lemma (Value Forms.)

If T F v : bool, then v is in the form true or false. If

I+ v:71 — 7, then v is in the form fn(x) = e.

Theorem (Progress.)

If e is a closed expression and I - e : T, then either e is a value or
there exists an €' such that e — ¢€’.

Corollary (Soundness)

Well-typed programs cannot go wrong.



Substitution (Lemma 1) Value Forms (Lemma 3)

\ 4
Type Preservation (Theorem 2)  Progress (Theorem 4)
hY v

Soundness (Corollary 5)



Lemma 1 (Substitution.) /T U{(x,7")} Fe: 7 and
FMev:7', thenT - e[v/x]:T.

Proof. By induction on the derivation of
ru{(x,7)}Fe:r.

What was the last rule applied in order to derive
FrU{(x,7")} & e: 77 Each possible rule is a different
case, so we have a division into cases:

Rule 1 or 2: This would mean that e = ¢, where c is
some boolean constant, and so T = bool. That is,
FU{x:7'} F c:bool In other words, x doesn't even
appear in e.

Then c[v/x] = c and T I ¢ : bool.



Rule 3: Then e = y for some variable y. (We choose y
instead of x so the names don't clash.) Then we have
two sub cases: either y and x really are the same
variable, or y # x.

Case a: Suppose x =y. Then

FTU{x:7'} b x:7" (thatis, 7 =7'), by Rule 3.
Moreover, x[v/x] = v, and T + v : 7.

Case b: Suppose x # y. Then the substitution
doesn’t change the expression at all.

yl[v/x| =y andT Fy:T.

Rule 4: Suppose e = if e then e else e3. By Rule 4,
it must be that T U{x : 7'} e; : bool,e : T,e3: 7.
Note that e[v/x] = if ej[v/x] then e; else e3[v/x].
By induction, T t= e1[v/x] : bool, ex[v/x] : T, e3[v/x] : T.
By Rule 4 again,

I'F if e1[v/x] then e; else e3[v/x]: 7.



Rule 5: Suppose e = fn(y)=>e;. Then T =1 — ty for
some 11 and 1. Note that

(£n(y)=>e1)[v/x] = £n(y)=>e1[v/x].

The last step of the derivation must have been

ru {(X,T’),(y,Tl)} Fe :m
Fru{(x,)} F fn(y)=>¢

By induction, T U {(y, 1)} ei[v/x] : 2. By Rule 5,
IE (fo(y)=>e1)|[v/x] : 71 — 1. (Recall T =1 — 12.)




Rule 6: Suppose e = e1(e2). Note that

(e1(e2))[v/x] = er[v/x](ealv/x]).

The last step of the derivation must have been

ry{(x,7)}Fe:mm—r Fry{(x,7)}Fe:mn
Fru{(x,7)} Fexlex) : 7

for some 71.

By induction, T = e1[v/x] : 11 — T, e2[v/x]| : 71, and so
by Rule 6, T F e1(e2)[v/x] : 7.

Therefore, by examination of the cases, replacing x with
a value of the same type does not change the type of the
expression. O



Theorem 2 (Type Preservation). /f[ - e: 7 and
e— ¢ thenT Fé 1.

Proof. By induction on the derivation of [ e : 7.
Rules 1 and 2: Then e = ¢ for some constant ¢, so

e — €' is impossible.

Rule 3: Then e = x for some variable x, so e — €’ is
impossible.

Rule 5: Then e = fn(x)=>e, so e —» €’ is impossible.



Rule 4: Then e = if e; then e else e3. This means
the derivation is in the form

[+ e : bool Ne:T1 [Fe3:T
Fif e; then ey else e3: 7T

e’ was derived either using Rule 8 or Rule 11.

Rule 8: Then € = e, or ¢’ = e3. Either way,
we've already shown that the type is T, so
Nr=ée:r.

Rule 11: Then e; — €] for some e}, and also
e’ = if €] then e else e3.

The important thing here is that T - e] : bool.
Why is this true? Induction.

Now, applying rule 4 gives us

[ if e] then e else e3: 7.



Rule 6: Then e = e;(e2). That means the derivation is
in the form

M-e: 7 =7 MN-e: 7
N-e(e): 7

for some 7'. Now, €' was derived using one of Rule 7, 9,
or 10.
Rule 9: Then e — €] and €' = €{(e2). By
induction, T + €} : 7" — 7, and by rule 6 we
have T F € (e2).
Rule 10 is similar, just with ex — €.



Rule 7: Then e; has the form fn(x)=>8&;, and
ey Is a value, say vo. Rule 7 ways that

e = &[wa/x].

Thus the derivation is

ru{(x,7)}Fé:r
lFe 7 =71
e (fo(x)=>8&)(v2) : 7

Mewvy 7!

Now we can apply Lemma 1. Since
FTU{(x,7)}Fé :7andTF vy: 7/, then we
have T F &1[va/x] : T.
Therefore no matter what step is taken, the type is
preserved. O



Lemma 3 (Value Forms.) IfT = v : bool, then v is in
the form true or false. If v :7m — 1, then v is in
the form fn(x) = e.

Proof. Immediate from rules 1, 2, and 5 and the
definition of value. O



Theorem 4 (Progress.) If e is a closed expression and
I+ e: T, then either e is a value or there exists an e’
such that e — €.

Proof. Once again, by induction on the derivation of
I+ e: 7. Once again, we divide this into cases based on
the last rule applied in the derivation.

Rules 1 and 2: Then e = ¢, for some boolean constant
c. Then e is a value.

Rule 3: Then e = x. This would mean x is a free
variable, and e is not closed, contradicting our
hypothesis. So, this case can’t happen.

Rule 5: Then e = fn(x)=>e;. Since e is closed, e is a
value.



Rule 4: Then e = if e; then e, else e3. We need to
show that, based on the information we have (specifically,
it's closed and well-typed), that it can take a step.

Since e is closed, so are e1, e, and es.

The last step in the derivation was

[+ e :bool e T [Fe3:T
Fif e; then ey else e3: 7T

€1 is either value or it is not a value.

Case 1: Suppose e; is a value. Then, since
' e; : bool, then by lemma 3, e is either
true or false. Hence by rule 8, either

€ —> €1 or e —» 6.

Case 2: Suppose e is not a value. Then

e1 — e; for some e; by structural induction.
Then we apply rule 11:

e — if e then e else e3.



Rule 6: e = ei(ep). Since e is closed, e; and ey also are
closed.
The last step in the derivation is

M-e:7" =71 MN-e: 7
N-e(e): 7

for some 7'. By induction, e; and e, are each either
values or they reduce to another expression.

We want to show that under the given circumstances, e
can take a step. There are three cases:

» e and ey are both values.
» e is not a value (ey, maybe, maybe not).
> ey is a value but e is not.



Case 1: Suppose e; and e, are both values. By
lemma 3, e; has the form fn(x)=>8&;. Then
ei(e2) = (fn(x)=>&)(e2) — &[ez/x] by rule
7.

Case 2: Suppose e; is not a value. By
induction, there exists €] such that e, — e,
so by rule 9, e1(e2) — ej(e2).

Case 3: Suppose e; is a value but e is not. By
induction, e — €}, for some €),. By rule 10,
ei(e2) — ei(e)).



Corollary 5 (Soundness.) Well-typed programs cannot
go wrong.

Proof. Combine Theorems 2 and 4. Specifically, suppose
MNe:r.

Then, by Theorem 4, either e is a value or e — € for
some €'. In the latter case, Theorem 2 says that

I+ ¢€ : 7. Then apply Corollary 5 inductively. O



