
Program testing can be used very effectively to show the
presence of bugs but never to show their absence.

E.W. Dijkstra, EWD 303

All by itself, a program is no more than half a conjecture.
The other half of the conjecture is the functional
specification the program is supposed to satisfy. The
programmer’s task is to present such complete
conjectures as proven theorems.

E.W. Dijkstra, EWD 1036



Bounded linear search returns

−1 if ∀ i ∈ [0, n),∼ P(sequence[i ])
k otherwise, where P(sequence[k])

and ∀ i ∈ [0, k),∼ P(sequence[i ])

Invariant (Loop of bounded linear search.)

(a) ∀ j ∈ [0, i − 1),∼ P(sequence[j ])

(b) found iff P(sequence[i − 1])

(c) i is the number of iterations completed.



Initialization.

(a) Since i is initially 0, the range [0, i) = [0, 0) which is empty.
Hence the proposition is vacuously true.

(b) Assuming ∼ P(undef ) makes this hold.

(c) There have been 0 iterations, and i = 0.

Maintenance. Distinguish ipre and ipost, namely
ipost = ipre + 1. Similarly distinguish foundpre and foundpost

(a) It must be that ∼ foundpre or else the guard would have
failed. Thus ∼ P(sequence[ipre − 1]), by inductive
hypothesis, part b. Together with the fact that that
∀ j ∈ [0, ipre − 1),∼ P(sequence[j ]), we now have
∀ j ∈ [0, ipre),∼ P(sequence[j ]), that is
∀ j ∈ [0, ipost − 1),∼ P(sequence[j ]).

(b) Immediate from the assignment to found.

(c) Immediate from the update to i . �



Correctness claim (bounded linear search.)

After at most n iterations, bounded linear search will return as
specified.

Proof. By Invariant 1.c, after at most n iterations, i = n and the
guard will fail. Moreover, when the guard fails, either found or
i = n.
Case 1. Suppose found. Then we return i − 1. Invariant 1.a tells
us that nothing in [0, i − 1) satisfies P. Invariant 1.b tells us that
i − 1 does. Together these fulfill the second part of the
specification: i − 1 is the first item satisfying P, and we return it.
Case 2. Suppose ∼ found. By elimination i = n. Invariant 1.a
tells us that nothing in [0, n − 1) satisfies P. Invariant 1.b tells us
that i − 1, that is, n − 1, also does not satisfy P. We return −1,
fulfilling the first part of the specification. �



Binary search returns

−1 if ∀ i ∈ [0, n), sequence[i ] 6= item

k otherwise, where sequence[k] = item

Invariant (Loop of binary search.)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then
∃ j ∈ [low, high) such that item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i

.



Initialization.

(a) Initially low = 0 and high = n, so the hypothesis and
conclusion are identical.

(b) No iterations yet, so high− low = n − 0 = n = n
1 = n

20

Maintenance. Distinguish pre and post variables. Let i be the
the number of iterations completed. The inductive hypothesis says:

(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [lowpre, highpre) such that item = sequence[j ]

(b) highpre − lowpre ≤ n
2i−1

The guard also assures us that highpre − lowpre > 1.
We have three possibilities, corresponding to the if-elif-else:



Case 1: Suppose item < sequence[mid].

(a) Since sequence is sorted, ∀ j ∈ [mid, highpre),
item < sequence[j ]. Thus if ∃ j ∈ [lowpre, highpre), then
∃ j ∈ [lowpre, mid), that is (with the update to high but not
to low), ∃ j ∈ [lowpost, highpost)
Now, by transitivity of the conditional, if ∃ j ∈ [0, n) such that
item = sequence[j ], then ∃ j ∈ [lowpost, highpost) such that
item = sequence[j ].

(b) If the length of the range is odd, then the sub-ranges above
and below mid are of equal size, each half of the range length
minus one. If the range length is even, then the lower
subrange is half that size and the upper subrange is one less
than half. Either way we throw away at least half and keep no
more than half. So,

highpost− lowpost ≤
1

2
· (highpre− lowpre) ≤ 1

2
· n

2i−1
≤ n

2i



Case 2: Suppose item = sequence[mid].

(a) Immediately we have ∃ j ∈ [mid, mid + 1), and, with the
update to high and low, that means
∃ j ∈ [lowpost, highpost). Moreover, the conditional is
T → T ≡ T .

(b) Note highpost − lowpost = 1. Earlier we said
1 < highpre − lowpre ≤ n

2i−1 . Since highpre − lowpre must
be a whole number, 2 ≤ n

2i−1 , and so 1 ≤ n
2i

. Finally
highpost − lowpost ≤ n

2i
.

Case 3: Suppose item > sequence[mid]. Similar to Case 1. �



Correctness claim (binary search.)

After at most lg n iterations, binary search returns as specified.

Proof. Suppose i ≥ lg n. Then 2i ≥ n and n
2i
≤ 1. Hence

high− low ≤ 1 and the guard fails.
Part a of the invariant means that if the item is anywhere, it’s in
the range. By the guard, on loop exit the range has size 0 or 1.
Case 1. Suppose the range has size 0. Then the item isn’t in the
range, and thus it isn’t anywhere. Since high = low, the first part
of the conditional fails and and −1 is returned, as specified.
Case 2. Suppose the range has size 1. We still don’t know if the
item is in the range, but we have only one location to check. If it’s
in sequence[low], then we return low, which meets the
specification. Otherwise the second part of the condition fails and
−1 is returned, as specified. �



Invariant (Class Exercise2.)

(a) head == null iff tail == null iff size == 0.

(b) If tail != null then tail.next == null.

(c) If head != null then tail is reached by following size - 1
next links from head.


