Program testing can be used very effectively to show the presence of bugs but never to show their absence.
E.W. Dijkstra, EWD 303

All by itself, a program is no more than half a conjecture. The other half of the conjecture is the functional specification the program is supposed to satisfy. The programmer's task is to present such complete conjectures as proven theorems.
E.W. Dijkstra, EWD 1036

Bounded linear search returns

$$
\begin{array}{ll}
-1 & \text { if } \forall i \in[0, n), \sim P(\text { sequence }[i]) \\
k & \text { otherwise, where } P(\text { sequence }[k]) \\
& \text { and } \forall i \in[0, k), \sim P(\text { sequence }[i])
\end{array}
$$

Invariant（Loop of bounded＿linear＿search．）
（a）$\forall j \in[0, i-1), \sim P($ sequence $[j])$
（b）found iff P（sequence $[i-1]$ ）
（c）i is the number of iterations completed．

Initialization.

(a) Since i is initially 0 , the range $[0, i)=[0,0)$ which is empty. Hence the proposition is vacuously true.
(b) Assuming $\sim P($ undef $)$ makes this hold.
(c) There have been 0 iterations, and $i=0$.

Maintenance. Distinguish ipre and $i_{\text {post }}$, namely $i_{\text {post }}=i_{\text {pre }}+1$. Similarly distinguish foundpre and found post
(a) It must be that \sim foundpre or else the guard would have failed. Thus $\sim P$ (sequence[ipre -1$]$), by inductive hypothesis, part b . Together with the fact that that $\forall j \in[0$, ipre -1$), \sim P$ (sequence $[j])$, we now have $\forall j \in[0$, ipre $), \sim P($ sequence $[j])$, that is $\forall j \in\left[0\right.$, ipost $\left.^{\text {pos }} 1\right), \sim P($ sequence $[j])$.
(b) Immediate from the assignment to found.
(c) Immediate from the update to i.

Correctness claim (bounded_linear_search.)

After at most n iterations, bounded_linear_search will return as specified.
Proof. By Invariant 1.c, after at most n iterations, $i=n$ and the guard will fail. Moreover, when the guard fails, either found or $i=n$.
Case 1. Suppose found. Then we return $i-1$. Invariant 1.a tells us that nothing in $[0, i-1$) satisfies P. Invariant $1 . b$ tells us that $i-1$ does. Together these fulfill the second part of the specification: $i-1$ is the first item satisfying P, and we return it. Case 2. Suppose \sim found. By elimination $i=n$. Invariant 1.a tells us that nothing in $[0, n-1$) satisfies P. Invariant 1.b tells us that $i-1$, that is, $n-1$, also does not satisfy P. We return -1 , fulfilling the first part of the specification.

Binary search returns

$$
\begin{array}{ll}
-1 & \text { if } \forall i \in[0, n), \text { sequence }[i] \neq \text { item } \\
k & \text { otherwise, where sequence }[k]=\text { item }
\end{array}
$$

Invariant (Loop of binary_search.)

(a) If $\exists j \in[0, n)$ such that i tem $=$ sequence $[j]$, then $\exists j \in[$ low, high $)$ such that item $=$ sequence[j].
(b) After i iterations, high - low $\leq \frac{n}{2^{i}}$.

Initialization.

(a) Initially low $=0$ and high $=n$, so the hypothesis and conclusion are identical.
(b) No iterations yet, so high - low $=n-0=n=\frac{n}{1}=\frac{n}{2^{0}}$

Maintenance. Distinguish pre and post variables. Let i be the the number of iterations completed. The inductive hypothesis says:
(a) If $\exists j \in[0, n)$ such that item $=$ sequence $[j]$, then $\exists j \in\left[\right.$ lowpre, high $_{\text {pre }}$) such that item $=$ sequence $[j]$
(b) high $_{\text {pre }}-$ lowpre $\leq \frac{n}{2^{i-1}}$

The guard also assures us that high $_{\text {pre }}-$ lowpre >1.
We have three possibilities, corresponding to the if-elif-else:

Case 1: Suppose item $<$ sequence[mid].
(a) Since sequence is sorted, $\forall j \in\left[\operatorname{mid}^{\text {, }}\right.$ high $\left._{\text {pre }}\right)$, item $<$ sequence $[j]$. Thus if $\exists j \in\left[\right.$ lowpre, $^{\text {high }}{ }_{\text {pre }}$), then $\exists j \in[$ lowpre, mid), that is (with the update to high but not to low), $\exists j \in\left[\right.$ low post , high ${ }_{\text {post }}$)
Now, by transitivity of the conditional, if $\exists j \in[0, n)$ such that item $=$ sequence[j], then $\exists j \in[$ lowpost , high post $)$ such that item $=$ sequence[j].
(b) If the length of the range is odd, then the sub-ranges above and below mid are of equal size, each half of the range length minus one. If the range length is even, then the lower subrange is half that size and the upper subrange is one less than half. Either way we throw away at least half and keep no more than half. So,

$$
\text { high }_{\text {post }}-\text { low post } \leq \frac{1}{2} \cdot\left(\text { high }_{\text {pre }}-\text { lowpre }\right) \leq \frac{1}{2} \cdot \frac{n}{2^{i-1}} \leq \frac{n}{2^{i}}
$$

Case 2: Suppose item = sequence[mid].
(a) Immediately we have $\exists j \in[$ mid, mid +1), and, with the update to high and low, that means
$\exists j \in\left[\right.$ low $_{\text {post }}$, high $\left._{\text {post }}\right)$. Moreover, the conditional is $T \rightarrow T \equiv T$.
(b) Note high post - lowpost $=1$. Earlier we said $1<$ high $_{\text {pre }}$ - lowpre $\leq \frac{n}{2^{i-1}}$. Since high ${ }_{\text {pre }}$ - lowpre must be a whole number, $2 \leq \frac{n}{2^{i-1}}$, and so $1 \leq \frac{n}{2^{i}}$. Finally high ${ }_{\text {post }}-$ lowpost $\leq \frac{n}{2^{i}}$.
Case 3: Suppose item $>$ sequence[mid]. Similar to Case 1.

Correctness claim (binary_search.)

After at most $\lg n$ iterations, binary_search returns as specified.
Proof. Suppose $i \geq \lg n$. Then $2^{i} \geq n$ and $\frac{n}{2^{i}} \leq 1$. Hence high - low ≤ 1 and the guard fails.
Part a of the invariant means that if the item is anywhere, it's in the range. By the guard, on loop exit the range has size 0 or 1 .
Case 1. Suppose the range has size 0 . Then the item isn't in the range, and thus it isn't anywhere. Since high = low, the first part of the conditional fails and and -1 is returned, as specified.
Case 2. Suppose the range has size 1 . We still don't know if the item is in the range, but we have only one location to check. If it's in sequence[low], then we return low, which meets the specification. Otherwise the second part of the condition fails and -1 is returned, as specified.

Invariant (Class Exercise2.)

(a) head $==$ null iff tail $==$ null iff size $==0$.
(b) If tail != null then tail.next == null.
(c) If head != null then tail is reached by following size - 1 next links from head.

