Invariant (Outer loop of selection_sort)
(a) The range $[0, i)$ in sequence is sorted.
(b) All the elements in range $[0, i)$ in sequence are less than or equal to all the elements in the range $[i, n)$.
(c) $0 \leq i \leq n$.

Invariant (Inner loop of selection_sort)
(a) sequence[min_pos] $=\min$.
(b) min is the smallest element in the range $[i, j$). (Formally: $\forall k \in[i, j), \min \leq$ sequence[k].)
(c) $i \leq$ min_pos $<j \leq n$.

Correctness claim (selection_sort.)
After n iterations, sequence is sorted and selection_sort returns.

```
def bounded_linear_search(sequence, P):
    found = False
    i=0
        found =P(sequence[i])
    i=i+1
```



```
    return i - i :
    else
    return -1
        a
```

$$
\begin{aligned}
T_{b / s}(n) & =a_{1}+a_{2}(n+1)+a_{3} n+a_{4}+\max \left(a_{5}, a_{6}\right) \\
& =b_{0}+b_{1} n
\end{aligned}
$$

```
def binary_search(sequence, TO, item):
        low=0
        high = len(sequence)
        while high - low > 1
        mid= (10w + high) / 2
        compar = TO(item, sequence[mid])
            if compare < 0:
                high = mid
            elif compar>0}
                low = mid + 1 (................................................c.c
            else:
                low = mid
                high = mid + 1
    if low < high and TO(item, sequence[low]) == 0:
        return low
                            C9
else:
```



```
\(T_{b s}(n)=c_{1}+c_{2}(\lg n+1)+\left(c_{3}+\max \left(c_{4}, c_{5}+c_{6}, c_{5}+c_{7}\right)\right) \lg n\)
    \(+c_{8}+\max \left(c_{9}, c_{10}\right)\)
    \(=d_{0}+d_{1} \lg n\)
```

```
def selection_sort(sequence, TO):
e
    for ii in range(len(sequence)):
e}\mp@subsup{e}{3}{}
    min = sequence[i]
    e}\mp@subsup{4}{4}{}n+\mp@subsup{e}{5}{}\mp@subsup{\sum}{i=0}{n-1}(n-i
    for jon range(i i, len (sequence)):
            if TO(sequence[j], min)< 0:
                                    e}\mp@subsup{\sum}{i=0}{n-1}(n-i-1
                        min = sequence[j]
                        min_pos=j
    sequence[min_pos]= sequence[i]
    sequence[i] = min
```

$$
T_{\text {sel }}(n)=f_{1}+f_{2} n+f_{3} n^{2}
$$

Every time you run a program, you are performing a scientific experiment that relates the program to the natural world and answers one of our core questions: How long will my program take?
The running time [of many programs] is relatively insensitive to the input itself; it depends primarily on the problem size.

Sedgewick, pg 173
$g(n) \sim f(n)$ means the functions are asymptotically equal, that is, that $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=1$. Thus $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3} \sim \frac{n^{3}}{6}$.
$g(n)=O(f(n))$, which really should be written $g(n) \in O(f(n))$, means that a scaled version of $f(n)$ asymptotically bounds g above. It means there exists a c such that when n is large enough, $g(n) \leq c f(n)$. Thus $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}=O\left(\frac{n^{3}}{6}\right)$ but also $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}=O\left(n^{3}\right)$ and $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}=O\left(n^{4}\right)$.

With big-oh, you can throw away the lower ordered terms and throw away the constant factor of the highest order term and overshoot.

With tilde, you only can throw away the lower ordered terms.

