
Invariant (Outer loop of selection sort)

(a) The range [0, i) in sequence is sorted.

(b) All the elements in range [0, i) in sequence are less than or
equal to all the elements in the range [i , n).

(c) 0 ≤ i ≤ n.

Invariant (Inner loop of selection sort)

(a) sequence[min pos] = min.

(b) min is the smallest element in the range [i , j). (Formally:
∀ k ∈ [i , j), min ≤ sequence[k].)

(c) i ≤ min pos < j ≤ n.

Correctness claim (selection sort.)

After n iterations, sequence is sorted and selection sort

returns.



def bounded_linear_search(sequence, P):

found = False

i = 0

while not found and i < len(sequence) :

found = P(sequence[i])

i = i + 1

if found :
return i − 1

else

return −1

a5

a3n

a4

a6

a2(n + 1)

a1

Tbls(n) = a1 + a2(n + 1) + a3n + a4 +max(a5, a6)
= b0 + b1n



def binary_search(sequence, TO, item):

low = 0
high = len(sequence)
while high − low > 1 :

mid = (low + high) / 2
compar = TO(item, sequence[mid])
if compare < 0:

high = mid
elif compar > 0:

low = mid + 1

else:

low = mid
high = mid + 1

if low < high and TO(item, sequence[low]) == 0:

return low
else:

return −1

c1

c2
c3

c4
c5

c6

c7

c8

c9

c10

Tbs(n) = c1 + c2(lg n + 1) + (c3 +max(c4, c5 + c6, c5 + c7)) lg n
+c8 +max(c9, c10)

= d0 + d1 lg n



def selection_sort(sequence, TO):

min_pos = i
for i in range(len(sequence)):

min = sequence[i]

for j in range(i + 1, len(sequence)):
if TO(sequence[j], min) < 0:

min = sequence[j]

min_pos = j
sequence[min_pos] = sequence[i]

sequence[i] = min

e3n

e6
∑n−1

i=0 (n − i − 1)

e4n + e5
∑n−1

i=0 (n − i)

e1 + e2n

Tsel(n) = f1 + f2n + f3n
2



Every time you run a program, you are performing a
scientific experiment that relates the program to the
natural world and answers one of our core questions:
How long will my program take?
The running time [of many programs] is relatively
insensitive to the input itself; it depends primarily on the
problem size.

Sedgewick, pg 173



g(n) ∼ f (n) means the functions are asymptotically equal, that is,

that limn→∞
g(n)
f (n) = 1. Thus n3

6 −
n2

2 + n
3 ∼

n3

6 .

g(n) = O(f (n)), which really should be written g(n) ∈ O(f (n)),
means that a scaled version of f (n) asymptotically bounds g
above. It means there exists a c such that when n is large enough,
g(n) ≤ cf (n). Thus n3

6 −
n2

2 + n
3 = O(n

3

6 ) but also
n3

6 −
n2

2 + n
3 = O(n3) and n3

6 −
n2

2 + n
3 = O(n4).

With big-oh, you can throw away the lower ordered terms and
throw away the constant factor of the highest order term and
overshoot.

With tilde, you only can throw away the lower ordered terms.


