
CSCI/MATH

243
Discrete Mathematics and Functional Programming

Spring 2018 MFW 2:15-3:25 pm SCI 131

http://cs.wheaton.edu/~tvandrun/cs243

Thomas VanDrunen
T630-752-5692 H630-639-2255 BThomas.VanDrunen@wheaton.edu

Office: SCI 163 Office hours: MWF 3:30–4:30pm;
Th 9:00–10:30am, 11-11:30 and 1:15–3:15pm.

Contents

CATALOG DESCRIPTION. Sets, logic, the nature of proof, induction, algorithms, algorithm correct-
ness, relations, lattices, functions, and graphs. Functional programming and recursion using
the ML programming language.

TEXTBOOK. Thomas VanDrunen, Discrete Mathematics and Functional Programming, Franklin,
Beedle and Associates, 2013.

OBJECTIVES. The chief goal of this course is to teach you formal reasoning, practiced under two
heads: mathematical proofs and computer programs. At the end of this course you should be
able to

• Manipulate symbolic logical forms.

• Write mathematical proofs, especially for results from basic set theory.

• Write simple programs in the ML programming language.

This course also fulfills the AAQR thematic core tag in the Christ at the Core curriculum and
supports the program outcomes of the computer science major. In terms of the AAQR learning
outcomes and the computer science program outcomes, at the end of this course you should be
able to

• Capture and model phenomena in nature, culture, and the human-built world using sets,
relations, and functions as well as ML datatypes. (AAQR LO # 1, CSCI PO B & C)

• Devise, implement (in the ML programming language), and test solutions to algorithmic
problems, using symbolic logic (especially quantification) to analyze the problem and syn-
thesize a solution. (AAQR LO #2, CSCI PO A & C)

• To write formal proofs for propositions about sets, relations, functions, and the correctness
of algorithms. (AAQR LO #3, CSCI PO C & E)

Other themes include

Writing and using formal definitions. We look carefully at how to define formal, rigorous defi-
nitions of mathematical ideas, built from primitive terms.

Thinking recursively. Recursion is defining something in terms of itself. This technique is cru-
cial both to programming and to some kinds of mathematical definitions and proofs.

Analysis and synthesis. Many of our proofs and programs comprise two main steps: breaking
something apart and putting something else together.

OUTLINE. This course is organized under the following headings:

1



Set and List. We meet the basic mathematical concepts of set, element, set operations, cardi-
nality, Cartesian products, and powersets. We begin the basics of the ML programming
languages including functions and datatypes. We learn to use ML’s main composite type,
the list.

Proposition. We explore the system of boolean logic (the “first-order predicate calculus”). This
heading is characterized by three “games” to exercise your understanding of symbolic logic:
1. verifying logical equivalences; 2. verifying argument forms; 3. verifying argument forms
with quantification. We also write ML programs that use boolean operators and consider
how the quantification of a program specification affects the algorithm to solve it.

Proof. This is the turning point of the semester, perhaps the most important heading. We learn
to write careful mathematical proofs of set-theoretical propositions. This includes one of
the most challenging sections, proofs about powersets. We also consider the connections
between proofs and algorithms.

Relation. We build on our understanding of sets to consider the definition of mathematical rela-
tions and their properties, propositions about them, and programs that manipulate them.
Relations are useful concepts in themselves, but this heading also gives us opportunity to
practice further the proving and programming techniques from earlier in the course.

Self reference. Earlier parts of our study will have introduced recursive definitions, but here we
take the idea head-on. Specific topics are recursive types in ML programming and proofs
using structural and mathematical induction.

Function. We study functions as mathematical objects built on set theory, as we will have done
for relations. The proofs in this section are an apex of the mathematical topic stream. We
also learn idioms in ML programming based on the theory of functions.

Other. At the end of the semester, we will briefly cover a few extra (but important) programming
topics.

For a detailed outline, see the table of contents in your textbook. For a schedule, see the course
website.

Course procedures

HOW WE DO THIS COURSE. This course has a pretty predictable rhythm to it. Class time is mainly
for working out new kinds of problems together. There will be daily assignments. Tests come
when we get to good stopping points.

Before class you are to read the assigned sections from the textbook and, sometimes, watch a
video presentation. Most class meetings will begin with a short quiz to enforce the reading.
In class I will review and highlight material, especially definitions, that you have read. I will avoid
lecturing, preferring to devote most of our meeting time to practicing sample problems. Some
class periods will also include demonstrations of new ML features. At the end of each class I will
assign problems from the book, which will also be posted on the course website. These will be a
mix of pencil-and-paper exercises for the math portion (mostly proofs) and coding exercises for
the programming portion (the latter to be turned in through a web interface).

READINGS. It is important that you read the assigned sections for each day. The readings fit into
three categories.

Read carefully means that I will not cover that material in class at all. It’s background stuff for
what we really want to talk about. You solely are responsible for it.

Read means that I will highlight and review the main ideas but not lecture on them. I will assume
you have seen them before (that is, that you have read the material). We will work on sample
problems from those sections in class.

2



Skim means that this is very difficult material that most students will need to see twice to
understand. Familiarize yourself with it first, and then I will lecture on it in class. Note well that
skim does not mean skip.

Most class meetings will begin with a short quiz to enforce the reading.

VIDEOS. I have made a few videos to go along with the textbook. Some students find watching
the videos helpful as a supplement to the textbook.

QUIZZES. Most class meetings will begin with a short quiz. A typical quiz will be two questions
long, take no more than five minutes, and assess whether the student has done the reading.

PROJECT. This course has a term project in which you apply the discrete math material and
what you have learned about programming to model real-world information or phenomena using
ML. Work on the project will be spread throughout the semester. Details of the assignment can
be found on the course website.

GRADING. There will be three tests (scheduled for Feb 9, Mar 19, and Apr 18, subject to change)
and a final (Thursday, May 3, 1:30pm).

instrument weight
Homework and quizzes 20
Project 10
Test 1 15
Test 2 15
Test 3 15
Final exam 25

I will also give one point of extra credit (applied towards homework) for every mistake you find
in the textbook, if you are the first to discover it. Bigger suggestions about the presentation (like
new exercises and examples or ways to make a section more understandable) will be rewarded
appropriately.

HOW TO SUCCEED IN THIS COURSE. By this point in your academic career you should have
developed good study habits and found what works best for you. In my experience, however, its
seems many students could still use a few pointers.

Prepare for class. Set aside time the day before or in the morning to think about what we will be covering.
Take the readings seriously. Try some of the exercises in the sections before we cover them in class.

Take the right amount of notes. You need to be active in class, working through the problems we’re doing on
the board. That said, some of you need to go easy on the note-taking. I feel sorry for the students who seem
to think that their main task in class is to transcribe everything written on the board; they make themselves
so busy writing, they don’t have time to process what’s going on in class. I wrote the textbook in a way that
should minimize (but not eliminate) the need to take notes. I’d rather you put your energy into thinking.

Keep up with the material. The material in this class keeps on building on itself. If you don’t understand
something, don’t just shrug it off and move on—get it right. You can use the re-turn-in policy for assign-
ments (see below) to get credit for this. Even if it doesn’t seem like last week’s material is being used this
week, last week’s material is going to come back later.

When all else fails, ask for help. A lot of learning in a class like this happens during office hours.

Policies etc
ACADEMIC INTEGRITY. Students are encouraged to discuss homework problems and ideas for
solutions. However, your solutions, proofs, and programs must be your own. If you are having
trouble debugging a program you have written, you may show it to a classmate to receive help;
likewise you may inspect a classmate’s incorrect program to give help. However, you should not
show correct code to a classmate, nor should you look at another student’s correct code, to give
or receive help. Homework on which students have unfairly collaborated will not be accepted.

ASSIGNMENTS. Unless otherwise specified, assignments are due at the class period after it was
assigned. I will collect the assignments at the end of class. However, you are granted an au-
tomatic grace period until 5:00 pm that day. Assignments not complete by class time can be

3



put in the instructor’s box. If you have not completed the assignment by the end of the grace
period (5:00 pm), then turn in what you have at that time for partial credit. Assignments are
spot-checked: depending on the assignment, around half of the problems will be graded, and
you won’t know ahead of time which ones. (This is for practicality—the TAs and I don’t have time
to grade every problem.)

Unless otherwise specified, coding problems are to be turned in using the automated grader
at http://cs.wheaton.edu/˜tvandrun/cs243/ml-grading.php. The same rules about due
dates and turn-in times apply. The system will run the submitted code against a series of test
cases and will report on the results. (You will not see the test cases themselves. Testing your
code with your own test cases is part of the assignment.) You may submit as many times as you
want until the deadline. Submissions that do not pass all the test cases will be assigned partial
credit by the instructor or TA, reported by email.

RE-TURN-IN OF ASSIGNMENTS. After you receive your graded assignments back, you may redo
any proof, programming problem, or “game” problem (from Chapter 3) that you did not receive
full points on and turn it back for regrading no more than two class meetings later. The regraded
problems will be evaluated by the same criteria as originally used, and the student may earn
back up to full credit for those problems. The same policy applies to regraded problems when
they are turned back: if the student does not receive full credit on a re-turned-in problem, he or
she may try again (indefinitely). For any re-turn-in, please also include the graded original (and
any subsequent graded attempts).

Some details: For paper assignments, “two class meetings” means at the end of class two class days later. For example,
if an assignment is turned back on Monday, the student must re-turn-in the assignment by the end of class Friday.
Note that the end of class, not 5:00pm, is the deadline for re-turn-ins; the daily grace period does not apply. Students
do not receive extra time to redo problems if they are delayed in receiving the graded assignment because of absence or
lateness—time is measured by when you would have received it back, not when you actually did. Since programming
assignments are submitted electronically and graded automatically, students have opportunity to re-turn-in a problem
only if they have submitted a good-faith attempt by the original due date. The instructor or TA will send them a partial-
credit assessment by email. Students then have three weekdays (72 hours) while the college is in session from the time
that the TA emails an assessment of partial credit to re-turn-in a solution to the problem. For example, if a student
receives a graded homework by email at 2:16 am Thursday, the student must re-turn-in the assignment no later than
2:16 am Tuesday. These are all accounted on a per-problem basis. Any problem for which the “two class days” period
has elapsed is no longer eligible for re-turn-in; similarly, problems for which no attempt was turned in for the original
due date are not eligible for re-turn-in (students may still turn in such problems for correction and comments, but not
for credit). In any case, the opportunity applies only to answers that have an error of substance; answers with only a
minor mistake that is completely corrected by the grader’s comments may not be resubmitted (for proofs, this would
apply to answers with only .25 point deduction).

ATTENDANCE. Students are expected to attend all class periods. It is courtesy to inform the
instructor when a class must be missed.

EXAMINATIONS. Students are expected to take all tests, quizzes, and exams as scheduled. In
the case where a test must be missed because of legitimate travel or other activities, a student
should notify the instructor no later than one week ahead of time and request an alternate time
to take the test. In the case of illness or other emergency preventing a student from taking a test
as scheduled, the student should notify the instructor as soon as possible, and the instructor
will make a reasonable accommodation for the student. The instructor is under no obligation to
give any credit to students for tests to which they fail to show up without prior arrangement or
notification in non-emergency situations. The final exam is Thursday, May 3, at 1:30pm. I do
not allow students to take finals early (which is also the college’s policy), so make appropriate
travel arrangements.

SPECIAL NEEDS. Institutional statement: Wheaton College is committed to providing reason-
able accommodations for students with disabilities. Any student with a documented disabil-
ity needing academic adjustments is requested to contact the Academic and Disability Ser-
vices Office as early in the semester as possible. Please call 630.752.5941 or send an e-mail
to jennifer.nicodem@wheaton.edu for further information.

My own statement: Whenever possible, classroom activities and testing procedures will be ad-
justed to respond to requests for accommodation by students with disabilities who have doc-
umented their situation with the registrar and who have arranged to have the documentation
forwarded to the course instructor. If you have documented need for accommodations, please

4



talk to the instructor about what accommodations you find most useful. Computer Science
students who need special adjustments made to computer hardware or software in order to fa-
cilitate their participation must also document their needs with the registrar in advance before
any accommodation will be attempted.

GENDER-INCLUSIVE LANGUAGE. The college requires the following statement to be included on
all syllabi: For academic discourse, spoken and written, the faculty expects students to use gender
inclusive language for human beings.

OFFICE HOURS. I try to keep a balance: Stop by anytime, but prefer my scheduled office hours.
Any time my door is closed, it means I’m doing something uninterruptible, such as making an
important phone call. Do not bother knocking; instead, come back in a few minutes or send me
an email.

DRESS AND DEPORTMENT. Please dress in a way that shows you take class seriously—more like
a job than a slumber party. (If you need to wear athletic clothes because of activities before or
after class, that’s ok, but try to make yourself as professional-looking as possible.) If you must
eat during class (for schedule or health reasons), please let the instructor know ahead of time;
we will talk about how to minimize the distraction.

ELECTRONIC DEVICES. Please keep laptops and all electronic devices put away and silenced
during class. (That’s right, this is a computer science course, but you’re not allowed to use a
computer during class. Trying out programming concepts on your own during class time (for
example) is not productive because it takes you away from class discussion. You cannot multi-
task as well as you think you can.) Text in class and DIE. I take this very seriously.

5


