Ex 5.3.7. Prove that if R is a relation on a set A and $(a, b) \in R$, then $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$.

Proof. Suppose R is a relation over A and that $(a, b) \in R$.

[Note that $(a, b) \in R$ implies that both a and b must be elements of A.]

Suppose $x \in \mathcal{I}_R(b)$. By definition of image, $(b, x) \in R$. Since $(a, b) \in R$, we have $(a, x) \in R \circ R$ by definition of composition. Moreover $x \in \mathcal{I}_{R \circ R}(a)$ by definition of image.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Therefore $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$ by definition of subset. \Box

Ex 5.3.9. Prove that if R is a relation from A to B, then $i_B \circ R = R$.

Proof. First suppose $(x, y) \in i_B \circ R$. By definition of composition, there exists $b \in B$ such that $(x, b) \in R$ and $(b, y) \in i_B$.

By definition of the identity relation, b = y. By substitution, $(x, y) \in R$. Hence $i_B \circ R \subseteq R$ by definition of subset.

Next suppose $(x, y) \in R$. By how R is defined, we know $x \in A$ and $y \in B$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

By definition of the identity relation, $(y, y) \in i_B$. By definition of composition, $(x, y) \in i_B \circ R$. Hence $R \subseteq i_B \circ R$.

Therefore, by definition of set equality, $i_B \circ R = R$. \Box